
5.1. Estequiometría: Conceptos básicos

La estequiometria es la parte de la Química que estudia las relaciones entre los compuestos que intervienen en una reacción, reactivos (a la izquierda) y productos (a la derecha). Entre paréntesis solemos expresar la fase o estado de agregación en la que se encuentran.

El primer paso de estos problemas será siempre ajustar la reacción (fundamental no olvidar), usando <u>coeficientes estequiométricos</u> de manera que el número de átomos de cada elemento sea idéntico a ambos lados de la reacción y así cumpla con <u>la ley de conservación de la masa</u>.

Mediante los coeficientes estequiométricos conseguimos que el número de átomos de C (4), de H (8) y de O (12) sea idéntico en ambos lados y se cumpla la ley de conservación de masa.

¿Cómo se interpretan los coeficientes estequiométricos?

Los coeficientes estequiométricos indican las relaciones que existen entre los diferentes compuestos que intervienen en la reacción. De esta manera para la ecuación anterior:

1 mol de C₄H₈ reaccionará con 6 moles de O₂ para obtener 4 moles de CO₂ y 4 moles de H₂O

1 mol de C₄H₈ reaccionará con 6 moles de O₂ para obtener 4 moles de CO₂ y 4 moles de H₂O

- Entonces... sabrías decir ¿Cuántos gramos de H2O se pueden formar con 64 g de O2?

$$C_4H_8$$

+

$$\rightarrow$$

$$\bigcirc$$
CO₂

1 mol de C₄H₈ reaccionará con 6 moles de O₂ para obtener 4 moles de CO₂ y 4 moles de H₂O

- Entonces... sabrías decir ¿Cuántos gramos de H2O se pueden formar con 64 g de O2?

$$C_4H_8$$

+

$$\rightarrow$$

1 mol de C₄H₈ reaccionará con 6 moles de O₂ para obtener 4 moles de CO₂ y 4 moles de H₂O

- Entonces... sabrías decir ¿Cuántos gramos de H2O se pueden formar con 64 g de O2?

$$C_4H_8$$

$$\rightarrow$$

$$4 H_2 O$$

Entonces... sabrías decir ¿Cuántos gramos de H₂O se pueden formar con 64 g de O₂?

$$C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$$

$$\rightarrow$$

*Resolución mediante equivalencias:

1) Pasamos los 64 g de O₂ a moles mediante la masa molar:

$$\frac{32 g O_2}{1 mol O_2} = \frac{64 g O_2}{x moles O_2} \rightarrow x = 0 mol O_2$$

2) Calculamos los moles de H₂O mediante la relación estequiométrica → 6 moles O₂: 4 moles de H₂O

$$\frac{6 \text{ moles } O_2}{4 \text{ moles } H_2 O} = \frac{2 \text{ moles } O_2}{x \text{ moles } H_2 O} \rightarrow x = \text{mol } H_2 O$$

Entonces... sabrías decir ¿Cuántos gramos de H₂O se pueden formar con 64 g de O₂?

 $C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$

*Resolución mediante equivalencias:

1) Pasamos los 64 g de O₂ a moles mediante la masa molar:

$$\frac{32 \ g \ O_2}{1 \ mol \ O_2} = \frac{64 \ g \ O_2}{x \ moles \ O_2} \to x = 2 \ mol \ O_2$$

2) Calculamos los moles de H₂O mediante la relación estequiométrica → 6 moles O₂: 4 moles de H₂O

$$\frac{6 \text{ moles } O_2}{4 \text{ moles } H_2 O} = \frac{2 \text{ moles } O_2}{x \text{ moles } H_2 O} \rightarrow x = \text{mol } H_2 O$$

Entonces... sabrías decir ¿Cuántos gramos de H₂O se pueden formar con 64 g de O₂?

 $C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$

*Resolución mediante equivalencias:

1) Pasamos los 64 g de O₂ a moles mediante la masa molar:

$$\frac{32 \ g \ O_2}{1 \ mol \ O_2} = \frac{64 \ g \ O_2}{x \ moles \ O_2} \to x = 2 \ mol \ O_2$$

2) Calculamos los moles de H₂O mediante la relación estequiométrica → 6 moles O₂: 4 moles de H₂O

$$\frac{6 \text{ moles } O_2}{4 \text{ moles } H_2O} = \frac{2 \text{ moles } O_2}{x \text{ moles } H_2O} \rightarrow x = 1{,}33 \text{ mol } H_2O$$

- Entonces... sabrías decir ¿Cuántos gramos de H₂O se pueden formar con 64 g de O₂?

$$C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$$

$$60_{2}$$

$$\rightarrow$$

$$4 H_2 O$$

*Resolución mediante equivalencias:

1) Pasamos los 64 g de O₂ a moles mediante la masa molar:

$$\frac{32 g O_2}{1 \ mol \ O_2} = \frac{64 \ g \ O_2}{x \ moles \ O_2} \to x = 2 \ mol \ O_2$$

2) Calculamos los moles de H₂O mediante la relación estequiométrica \rightarrow 6 moles O_2 : 4 moles de H_2O

$$\frac{32 \ g \ O_2}{1 \ mol \ O_2} = \frac{64 \ g \ O_2}{x \ moles \ O_2} \to x = 2 \ mol \ O_2$$

$$\frac{6 \ moles \ O_2}{4 \ moles \ H_2O} = \frac{2 \ moles \ O_2}{x \ moles \ H_2O} \to x = 1,33 \ mol \ H_2O$$

3) Pasamos los moles de H₂O $\frac{1 \, mol \, H_2 0}{18 \, g \, H_2 0} = \frac{1{,}33 \, moles \, H_2 0}{x \, g \, H_2 0} \to x = \bigcirc gramos \, H_2 0$ obtenidos a gramos

- Entonces... sabrías decir ¿Cuántos gramos de H₂O se pueden formar con 64 g de O₂?

 $C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O_3$

*Resolución mediante equivalencias:

1) Pasamos los 64 g de O₂ a moles mediante la masa molar:

$$\frac{32 g O_2}{1 \ mol \ O_2} = \frac{64 g O_2}{x \ moles \ O_2} \to x = 2 \ mol \ O_2$$

2) Calculamos los moles de H₂O mediante la relación estequiométrica \rightarrow 6 moles O_2 : 4 moles de H_2O

$$\frac{32 \ g \ O_2}{1 \ mol \ O_2} = \frac{64 \ g \ O_2}{x \ moles \ O_2} \to x = 2 \ mol \ O_2$$

$$\frac{6 \ moles \ O_2}{4 \ moles \ H_2O} = \frac{2 \ moles \ O_2}{x \ moles \ H_2O} \to x = 1,33 \ mol \ H_2O$$

3) Pasamos los moles de H₂O $\frac{1 \, mol \, H_2O}{18 \, g \, H_2O} = \frac{1,33 \, moles \, H_2O}{x \, g \, H_2O} \rightarrow x = 24 \, gramos \, H_2O$ obtenidos a gramos

- a. ¿Qué masa de tricloruro de aluminio se obtiene al hacer reaccionar 23 g de aluminio con un exceso de dicloro?
- b. ¿Qué masas de aluminio y cloro se necesitan para obtener 145 g de cloruro de aluminio?

a. ¿Qué masa de tricloruro de aluminio se obtiene al hacer reaccionar 23 g de aluminio con un exceso de dicloro?

Lo primero que se debe hacer es escribir la ecuación química que corresponde a esta reacción química y ajustarla. \bigcirc Al + \bigcirc Cl₂ \longrightarrow \bigcirc AlCl₃

$$Mm(Al) = 26,98 \text{ g/mol}$$

 $Mm(Cl_2) = 2.35,45 = 70,90 \text{ g/mol}$
 $Mm(AlCl_3) = 26,98 + 3.35,45 = g/mol$

a. ¿Qué masa de tricloruro de aluminio se obtiene al hacer reaccionar 23 g de aluminio con un exceso de dicloro?

$$Mm(Al) = 26,98 \text{ g/mol}$$

 $Mm(Cl_2) = 2.35,45 = 70,90 \text{ g/mol}$
 $Mm(AlCl_3) = 26,98 + 3.35,45 = g/mol$

a. ¿Qué masa de tricloruro de aluminio se obtiene al hacer reaccionar 23 g de aluminio con un exceso de dicloro?

$$Mm(Al) = 26,98 \text{ g/mol}$$

 $Mm(Cl_2) = 2.35,45 = 70,90 \text{ g/mol}$
 $Mm(AlCl_3) = 26,98 + 3.35,45 = 133,33 \text{ g/mol}$

$$Mm(Al) = 26,98 \text{ g/mol}$$

 $Mm(Cl_2) = 2.35,45 = 70,90 \text{ g/mol}$
 $Mm(AlCl_3) = 26,98 + 3.35,45 = 133,33 \text{ g/mol}$

$$Mm(Al) = 26,98 \text{ g/mol}$$

 $Mm(Cl_2) = 2.35,45 = 70,90 \text{ g/mol}$
 $Mm(AlCl_3) = 26,98 + 3.35,45 = 133,33 \text{ g/mol}$

a.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

 $23 \text{ g} \text{ m}$?

a.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

 $23 \text{ g} \text{ m}$?

$$n = \frac{m}{Mm}$$

$$n_{Al} = \frac{23}{26,98} = 0, \bigcirc moles$$

a.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

 $23 \text{ g} \text{ m}$?

$$n = \frac{m}{Mm}$$

$$n_{Al} = \frac{23}{26,98} = 0.85 \, moles$$

$$n = \frac{m}{Mm}$$

$$n_{Al} = \frac{23}{26,98} = 0.85 \, moles$$

Se relaciona el número de moles de Al con el número de moles de tricloruro de aluminio, tal y como nos indica el ajuste de la reacción química.

$$n_{AlCl_3} = \frac{\text{O moles de } \mathbf{AlCl_3}}{2 \text{ mol de } Al} \cdot 0.85 \text{ moles de } Al = 0.0 \text{ moles}$$

$$n=\frac{m}{Mm}$$

$$n_{Al} = \frac{23}{26,98} = 0.85 \, moles$$

Se relaciona el número de moles de Al con el número de moles de tricloruro de aluminio, tal y como nos indica el ajuste de la reacción química.

$$n_{AlCl_3} = \frac{2 \text{ moles de } \mathbf{AQlCl_3}}{2 \text{ mol de } Al}$$
. 0,85 moles de $Al = 0$,85 moles

$$n = \frac{m}{Mm}$$

$$n_{Al} = \frac{23}{26,98} = 0.85 \, moles$$

Se relaciona el número de moles de Al con el número de moles de tricloruro de aluminio, tal y como nos indica el ajuste de la reacción química.

$$n_{AlCl_3} = \frac{2 \text{ moles de AlClCl}_3}{2 \text{ mol de Al}}$$
. 0,85 moles de Al = 0,85 moles

Una vez obtenido el número de moles de producto, se calcula la masa de AlCl₃ que se obtiene.

$$m_{AlCl_3} = n. Mm = 0.85.$$

$$n = \frac{m}{Mm}$$

$$n_{Al} = \frac{23}{26,98} = 0.85 \, moles$$

Se relaciona el número de moles de Al con el número de moles de tricloruro de aluminio, tal y como nos indica el ajuste de la reacción química.

$$n_{AlCl_3} = \frac{2 \text{ moles de AlClCl}_3}{2 \text{ mol de Al}}$$
. 0,85 moles de Al = 0,85 moles

Una vez obtenido el número de moles de producto, se calcula la masa de AlCl₃ que se obtiene.

$$m_{AlCl_3} = n. Mm = 0.85 . 133.33 = g$$

$$n = \frac{m}{Mm}$$

$$n_{Al} = \frac{23}{26,98} = 0.85 \, moles$$

Se relaciona el número de moles de Al con el número de moles de tricloruro de aluminio, tal y como nos indica el ajuste de la reacción química.

$$n_{AlCl_3} = \frac{2 \text{ moles de AlClCl}_3}{2 \text{ mol de Al}}$$
. 0,85 moles de Al = 0,85 moles

Una vez obtenido el número de moles de producto, se calcula la masa de AlCl₃ que se obtiene.

$$m_{AlCl_3} = n. Mm = 0.85 . 133,33 = 113,33 g$$

- a. ¿Qué masa de tricloruro de aluminio se obtiene al hacer reaccionar 23 g de aluminio con un exceso de dicloro?
- b. ¿Qué masas de aluminio y cloro se necesitan para obtener 145 g de cloruro de aluminio?

b.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

$$m? \quad m? \qquad 145 \text{ g}$$

$$n = \frac{m}{Mm}$$

$$n_{AlCl_3} = \frac{145}{133,33} = \bigcirc moles$$

b.
$$\begin{array}{cccc}
2 & \text{Al} & + & 3 & \text{Cl}_2 & \longrightarrow & 2 & \text{AlCl}_3 \\
m? & m? & m? & 145 & g
\end{array}$$

$$n = \frac{m}{Mm}$$

$$n_{AlCl_3} = \frac{145}{133,33} = 1,09 \ moles$$

b.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

$$m? \qquad m? \qquad 145 \text{ g}$$

$$n = \frac{m}{Mm}$$

$$n_{AlCl_3} = \frac{145}{133,33} = 1,09 \ moles$$

$$n_{Al} = \frac{Omoles de Al}{2 moles de AlCl_3}$$
. 1,09 moles de AlCl_3 = Omoles

$$m_{Al} = 1,09$$
.

b.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

$$m? \qquad m? \qquad 145 \text{ g}$$

$$n = \frac{m}{Mm}$$

$$n_{AlCl_3} = \frac{145}{133,33} = 1,09 \ moles$$

$$n_{Al} = \frac{2 \text{ moles de Al}}{2 \text{ moles de AlCl}_3}$$
. 1,09 moles de AlCl₃ = 1,09 moles

$$m_{Al} = 1,09 . \bigcirc = \bigcirc g$$

b.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

$$m? \qquad m? \qquad 145 \text{ g}$$

$$n = \frac{m}{Mm}$$

$$n_{AlCl_3} = \frac{145}{133,33} = 1,09 \ moles$$

$$n_{Al} = \frac{2 \text{ moles de Al}}{2 \text{ moles de AlCl}_3}$$
. 1,09 moles de AlCl₃ = 1,09 moles

$$m_{Al} = 1,09 . 26,98 = g$$

b.
$$2 \text{ Al} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ AlCl}_3$$

$$m? \qquad m? \qquad 145 \text{ g}$$

$$n = \frac{m}{Mm}$$

$$n_{AlCl_3} = \frac{145}{133,33} = 1,09 \ moles$$

$$n_{Al} = \frac{2 \text{ moles de Al}}{2 \text{ moles de AlCl}_3}$$
. 1,09 moles de AlCl₃ = 1,09 moles

$$m_{Al} = 1,09 . 26,98 = 29,41 g$$

Para calcular la masa que se necesita de cloro relacionamos los moles de sal con los moles de cloro según la ecuación química ajustada:

$$n_{Cl_2} = \frac{\mathcal{O}_{moles de Cl_2}}{2 \text{ moles de AlCl}_3} \cdot 1,09 \text{ moles de AlCl}_3 = \mathcal{O}_{moles}$$

Para calcular la masa que se necesita de cloro relacionamos los moles de sal con los moles de cloro según la ecuación química ajustada:

$$n_{Cl_2} = \frac{3 \text{ moles de } Cl_2}{2 \text{ moles de } AlCl_3} \cdot 1,09 \text{ moles de } AlCl_3 = \bigcirc \text{ moles}$$

Para calcular la masa que se necesita de cloro relacionamos los moles de sal con los moles de cloro según la ecuación química ajustada:

$$n_{Cl_2} = \frac{3 \text{ moles de } Cl_2}{2 \text{ moles de } AlCl_3} \cdot 1,09 \text{ moles de } AlCl_3 = 1,64 \text{ moles}$$

Para calcular la masa que se necesita de cloro relacionamos los moles de sal con los moles de cloro según la ecuación química ajustada:

$$n_{Cl_2} = \frac{3 \text{ moles de } Cl_2}{2 \text{ moles de } AlCl_3}$$
. 1,09 moles de $AlCl_3 = 1,64 \text{ moles}$

$$m_{Cl_2} = 1,64.70,90 = 115.92 \,\mathrm{g}$$

IMPORTANTE: Observa que se cumple la Ley de Lavoisier (la masa de los reactivos es igual a la masa de los productos). 29,41 + 115,92 = 145,33 g (la diferencia con 145 g se debe a los decimales que se redondean).

- a. Calcula la masa de butanol quemada.
- b. Determina los moles de dióxido de carbono que se han producido.

- a. Calcula la masa de butanol quemada.
- b. Determina los moles de dióxido de carbono que se han producido.

- a. Calcula la masa de butanol quemada.
- b. Determina los moles de dióxido de carbono que se han producido.

$$Mm(C_4H_9OH) = 4.12,01+10.1,01+15,99 = g/mol$$

 $Mm(H_2O) = 2.1,01+15,99 = 18,01 g/mol$

$$Mm(C_4H_9OH) = 4.12,01+10.1,01+15,99 = 74,13 \text{ g/mol}$$

 $Mm(H_2O) = 2.1,01+15,99 = 18,01 \text{ g/mol}$

$$C_4H_9OH + \frac{13}{2}O_2 \longrightarrow V(c.n.)$$
? 4 $CO_2 + 5 H_2O$
n? 52,4 g

$$Mm(C_4H_9OH) = 4.12,01+10.1,01+15,99 = 74,13 \text{ g/mol}$$

 $Mm(H_2O) = 2.1,01+15,99 = 18,01 \text{ g/mol}$

$$n = \frac{m}{Mm}$$

$$n_{H_2O} = \frac{52,4}{\text{moles}} = \text{moles}$$

$$C_4H_9OH + \frac{13}{2}O_2 \longrightarrow V(c.n.)$$
? 4 $CO_2 + 5 H_2O$
n? 52,4 g

$$Mm(C_4H_9OH) = 4.12,01+10.1,01+15,99 = 74,13 \text{ g/mol}$$

 $Mm(H_2O) = 2.1,01+15,99 = 18,01 \text{ g/mol}$

$$n = \frac{m}{Mm}$$

$$n_{H_2O} = \frac{52,4}{18,01} = \bigcirc$$
 moles

$$C_4H_9OH + \frac{13}{2}O_2 \longrightarrow V(c.n.)$$
? 4 $CO_2 + 5 H_2O$
n? 52,4 g

$$Mm(C_4H_9OH) = 4.12,01+10.1,01+15,99 = 74,13 \text{ g/mol}$$

 $Mm(H_2O) = 2.1,01+15,99 = 18,01 \text{ g/mol}$

$$n = \frac{m}{Mm}$$

$$n_{H_2O} = \frac{52,4}{18,01} = 2,91 \text{ moles}$$

$$C_4H_9OH + \frac{13}{2}O_2 \longrightarrow V(c.n.)$$
? $A CO_2 + 5 H_2O$
n? $52,4 g$

$$Mm(C_4H_9OH) = 4.12,01+10.1,01+15,99 = 74,13 \text{ g/mol}$$

 $Mm(H_2O) = 2.1,01+15,99 = 18,01 \text{ g/mol}$

$$n = \frac{m}{Mm}$$

$$n_{H_2O} = \frac{52,4}{18,01} = 2,91 \text{ moles}$$

a.
$$n_{C_4H_9OH} = \frac{1 \text{ mol de } C_4H_9OH}{\text{Omoles de } H_2O}$$
. 2,91 moles de $H_2O = \text{Omoles}$

$$m_{C_4H_9OH} = \bigcirc .74,13 = \bigcirc g$$

$$C_4H_9OH + \frac{13}{2}O_2 \longrightarrow V(c.n.)$$
? $A CO_2 + 5 H_2O$
n? $52,4 g$

$$Mm(C_4H_9OH) = 4.12,01+10.1,01+15,99 = 74,13 \text{ g/mol}$$

 $Mm(H_2O) = 2.1,01+15,99 = 18,01 \text{ g/mol}$

$$n = \frac{m}{Mm}$$

$$n_{H_2O} = \frac{52,4}{18,01} = 2,91 \text{ moles}$$

a.
$$n_{C_4H_9OH} = \frac{1 \text{ mol de } C_4H_9OH}{5 \text{ moles de } H_2O}$$
. 2,91 moles de $H_2O = 0.58$ moles

$$m_{C_4H_9OH} = 0.58 \cdot 74.13 = g$$

$$C_4H_9OH + \frac{13}{2}O_2 \longrightarrow V(c.n.)$$
? $A CO_2 + 5 H_2O$
n? $52,4 g$

$$Mm(C_4H_9OH) = 4.12,01+10.1,01+15,99 = 74,13 \text{ g/mol}$$

 $Mm(H_2O) = 2.1,01+15,99 = 18,01 \text{ g/mol}$

$$n = \frac{m}{Mm}$$

$$n_{H_2O} = \frac{52,4}{18,01} = 2,91 \text{ moles}$$

a.
$$n_{C_4H_9OH} = \frac{1 \text{ mol de } C_4H_9OH}{5 \text{ moles de } H_2O}$$
. 2,91 moles de $H_2O = 0.58$ moles

$$m_{C_4H_9OH} = 0.58 \cdot 74.13 = 43.14 \text{ g}$$

- a. Calcula la masa de butanol quemada.
- b. Determina los moles de dióxido de carbono que se han producido.

- a. Calcula la masa de butanol quemada.
- b. Determina los moles de dióxido de carbono que se han producido.

b.
$$n_{CO_2} = \frac{\text{moles de } CO_2}{\text{5 moles de } H_2O} \cdot 2,91 \text{ moles de } H_2O = \text{moles}$$

- a. Calcula la masa de butanol quemada.
- b. Determina los moles de dióxido de carbono que se han producido.

b.
$$n_{CO_2} = \frac{4 \text{ moles de } CO_2}{5 \text{ moles de } H_2O} \cdot 2,91 \text{ moles de } H_2O = \text{moles}$$

- a. Calcula la masa de butanol quemada.
- b. Determina los moles de dióxido de carbono que se han producido.

b.
$$n_{CO_2} = \frac{4 \text{ moles de } CO_2}{5 \text{ moles de } H_2O}$$
. 2,91 moles de $H_2O = 2,33$ moles

$$CaO(s) + HCl(ac) \longrightarrow CaCl_2(ac) + H_2O(l)$$

$$CaO(s) + HCl(ac) \longrightarrow CaCl_2(ac) + H_2O(l)$$

CaO (s) +
$$\bigcirc$$
 HCl (ac) \longrightarrow CaCl₂ (ac) + H₂O (l) m? 73 g 111 g? 111 g

$$CaO(s) + HCl(ac) \longrightarrow CaCl_2(ac) + H_2O(l)$$

CaO (s) + 2 HCl (ac)
$$\longrightarrow$$
 CaCl₂ (ac) + H₂O (l)
m? 73 g 111 g?
m? 111 g

$$Mm(HC1) = 1,01 + 35,45 = 36,46 \text{ g/mol}$$

 $Mm(CaCl_2) = 40,08 + 2 \cdot 35,45 = 110,98 \text{ g/mol}$
 $Mm(CaO) = 40,08 + 15,99 = g/mol$

$$CaO(s) + HCl(ac) \longrightarrow CaCl_2(ac) + H_2O(l)$$

CaO (s) + 2 HCl (ac)
$$\longrightarrow$$
 CaCl₂ (ac) + H₂O (l)
m? 73 g 111 g?
m? 111 g

CaO (s) + 2 HCl (ac)
$$\longrightarrow$$
 CaCl₂ (ac) + H₂O (l)
m? 73 g 111 g?
m? 111 g

$$Mm(HCl) = 1,01 + 35,45 = 36,46 \text{ g/mol}$$

 $Mm(CaCl_2) = 40,08 + 2 \cdot 35,45 = 110,98 \text{ g/mol}$
 $Mm(CaO) = 40,08 + 15,99 = 56,07 \text{ g/mol}$

$$n = \frac{m}{Mm} \qquad \qquad n_{HCl} = \frac{73}{36,46} = 0 \text{ moles}$$

CaO (s) + 2 HCl (ac)
$$\longrightarrow$$
 CaCl₂ (ac) + H₂O (l)
m? 73 g 111 g?
m? 111 g

$$Mm(HCl) = 1,01 + 35,45 = 36,46 \text{ g/mol}$$

 $Mm(CaCl_2) = 40,08 + 2 \cdot 35,45 = 110,98 \text{ g/mol}$
 $Mm(CaO) = 40,08 + 15,99 = 56,07 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{HCl} = \frac{73}{36,46} = 2 \text{ moles}$

CaO (s) + 2 HCl (ac)
$$\longrightarrow$$
 CaCl₂ (ac) + H₂O (l)
m? 73 g 111 g?
m? 111 g

$$n = \frac{m}{Mm} \qquad \qquad n_{HCl} = \frac{73}{36,46} = 2 \text{ moles}$$

$$n_{CaCl_2} = \frac{\bigcap_{mol\ de\ CaCl_2}}{2\ moles\ de\ HCl}$$
. 2 moles de HCl = \infty mol

$$m_{CaCl_2} = 1$$
. $g = g$ con 73 g de ácido clorhídrico se podrían obtener 111 g de cloruro de calcio.

CaO (s) + 2 HCl (ac)
$$\longrightarrow$$
 CaCl₂ (ac) + H₂O (l)
m? 73 g 111 g?
m? 111 g

$$n = \frac{m}{Mm} \qquad \qquad n_{HCl} = \frac{73}{36,46} = 2 \text{ moles}$$

$$n_{CaCl_2} = \frac{1 \text{ mol de } CaCl_2}{2 \text{ moles de } HCl}$$
. 2 moles de HCl = 1 mol

 $m_{CaCl_2} = 1$. g = g , con 73 g de ácido clorhídrico se podrían obtener 111 g de cloruro de calcio.

CaO (s) + 2 HCl (ac)
$$\longrightarrow$$
 CaCl₂ (ac) + H₂O (l)
m? 73 g 111 g?
m? 111 g

$$n = \frac{m}{Mm} \qquad \qquad n_{HCl} = \frac{73}{36,46} = 2 \text{ moles}$$

$$n_{CaCl_2} = \frac{1 \text{ mol de } CaCl_2}{2 \text{ moles de } HCl}$$
. 2 moles de HCl = 1 mol

 $m_{CaCl_2} = 1$. 110,98 g = 110,98 g \longrightarrow con 73 g de ácido clorhídrico se podrían obtener 111 g de cloruro de calcio.

CaO (s) + 2 HCl (ac)
$$\longrightarrow$$
 CaCl₂ (ac) + H₂O (l)
m? 73 g 111 g?
m? 111 g

$$n = \frac{m}{Mm} \qquad \qquad n_{HCl} = \frac{73}{36,46} = 2 \text{ moles}$$

$$n_{CaCl_2} = \frac{1 \text{ mol de } CaCl_2}{2 \text{ moles de } HCl}$$
. 2 moles de HCl = 1 mol

 $m_{cacl_2} = 1$. 110,98 g = 110,98 g \longrightarrow Sí, con 73 g de ácido clorhídrico se podrían obtener 111 g de cloruro de calcio.

$$CaO(s) + HCl(ac)$$
 \longrightarrow $CaCl_2(ac) + H_2O(l)$

$$CaO(s) + HCl(ac) \longrightarrow CaCl_2(ac) + H_2O(l)$$

$$n_{CaO} = \frac{\bigcirc mol \ de \ CaO}{2 \ moles \ de \ HCl}$$
. 2 moles de HCl = $\bigcirc mol$

$$\mathbf{m}_{\text{CaO}} = 1$$
.

$$CaO(s) + HCl(ac) \longrightarrow CaCl_2(ac) + H_2O(l)$$

$$n_{CaO} = \frac{1 \, mol \, de \, CaO}{2 \, moles \, de \, HCl}$$
. 2 moles de HCl = 1 mol

$$\mathbf{m}_{\text{CaO}} = 1$$
.

$$CaO(s) + HCl(ac) \longrightarrow CaCl_2(ac) + H_2O(l)$$

$$n_{CaO} = \frac{1 \, mol \, de \, CaO}{2 \, moles \, de \, HCl}$$
. 2 moles de HCl = 1 mol

$$m_{CaO} = 1.56,07 = g$$

$$CaO(s) + HCl(ac) \longrightarrow CaCl_2(ac) + H_2O(l)$$

$$n_{CaO} = \frac{1 \, mol \, de \, CaO}{2 \, moles \, de \, HCl}$$
. 2 moles de HCl = 1 mol

$$m_{CaO} = 1.56,07 = 56,07 g$$

El hierro puede obtenerse según la reacción:

$$Fe_2O_3(s) + CO(g)$$
 \rightarrow $Fe(s) + CO_2(g)$

$$Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

$$Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

Fe₂O₃(s) +
$$\bigcirc$$
 CO(g) \longrightarrow \bigcirc Fe(s) + \bigcirc CO₂(g)
978 g mineral 354 g

$$Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

$$Fe_2O_3(s) + \bigcirc CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2.55,85 + 3.15,99 = g/mol$

$$Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

Fe₂O₃(s) +
$$\frac{3}{3}$$
 CO(g) \longrightarrow 2 Fe(s) + $\frac{3}{3}$ CO₂(g)
978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2.55,85 + 3.15,99 = 159,67 \text{ g/mol}$

$$Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2.55,85 + 3.15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = \bigcirc$ moles

$$Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$$

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2.55,85 + 3.15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = 6,34 \text{ moles}$

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2.55,85 + 3.15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = 6,34 \text{ moles}$

$$n_{Fe_{2O_3}} = \frac{\bigcap mol \ de \ Fe_2O_3}{2 \ moles \ de \ Fe}$$
. 6,34 moles de Fe = moles

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2.55,85 + 3.15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = 6,34 \text{ moles}$

$$n_{Fe_{2O_3}} = \frac{1 \text{ mol de } Fe_2O_3}{2 \text{ moles de } Fe}$$
. 6,34 moles de Fe = moles

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2.55,85 + 3.15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = 6,34 \text{ moles}$

$$n_{Fe_{2O_3}} = \frac{1 \text{ mol de } Fe_2O_3}{2 \text{ moles de } Fe}$$
. 6,34 moles de Fe = 3,17 moles

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2 \cdot 55,85 + 3 \cdot 15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = 6,34 \text{ moles}$

$$n_{Fe_{2O_3}} = \frac{1 \text{ mol de } Fe_2O_3}{2 \text{ moles de } Fe}$$
. 6,34 moles de Fe = 3,17 moles

$$m_{Fe_2O_3} = 3,17 \cdot 159,67 = g$$

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2.55,85 + 3.15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = 6,34 \text{ moles}$

$$n_{Fe_{2O_3}} = \frac{1 \text{ mol de } Fe_2O_3}{2 \text{ moles de } Fe}$$
. 6,34 moles de Fe = 3,17 moles

$$m_{Fe_2O_3} = 3.17 \cdot 159.67 = 506.03 \text{ g}$$

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

 $Mm(Fe_2O_3) = 2 \cdot 55,85 + 3 \cdot 15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = 6,34 \text{ moles}$

$$n_{Fe_{2O_3}} = \frac{1 \text{ mol de } Fe_2O_3}{2 \text{ moles de } Fe}$$
. 6,34 moles de Fe = 3,17 moles

$$m_{Fe_2O_3} = 3,17 \cdot 159,67 = 506,03 \text{ g}$$

%
$$Fe_2O_3 = \frac{506,03}{978}$$
. $100 = 51,$ %

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

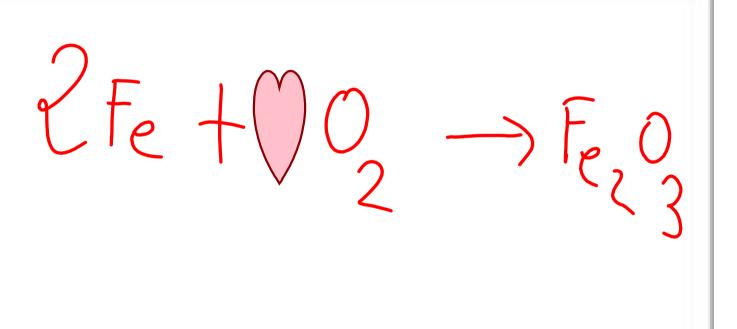
978 g mineral 354 g

$$Mm(Fe) = 55,85 \text{ g/mol}$$

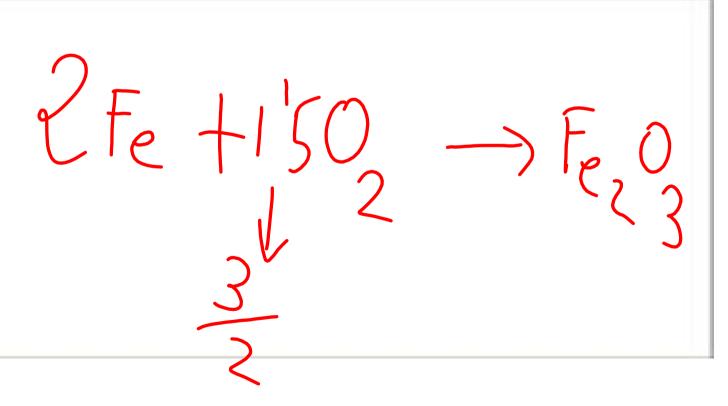
 $Mm(Fe_2O_3) = 2 \cdot 55,85 + 3 \cdot 15,99 = 159,67 \text{ g/mol}$

$$n = \frac{m}{Mm}$$
 $n_{\text{Fe}} = \frac{354}{55,85} = 6,34 \text{ moles}$

$$n_{Fe_{2O_3}} = \frac{1 \text{ mol de } Fe_2O_3}{2 \text{ moles de } Fe}$$
. 6,34 moles de Fe = 3,17 moles


$$m_{Fe_2O_3} = 3,17 \cdot 159,67 = 506,03 \text{ g}$$

%
$$Fe_2O_3 = \frac{506,03}{978}$$
. $100 = 51,74\%$



Fe 2 0 3

	Ecuación química	ajusta	ada	2 Fe	+	O_2	→	Fe ₂ O ₃
- 1	Estequiometría reacción química	de	la	2 mol	+	mol	→	1 mol

	Ecuación química	ajusta	ada	2 Fe	+	O_2	→	Fe ₂ O ₃
- 1	Estequiometría reacción química	de	la	2 mol	+	mol	→	1 mol

Ecuación química ajustada	2 Fe	+	3/2	→	Fe ₂ O ₃
			O_2		
Estequiometría de la	2 mol	+	3/2	→	1 mol
reacción química			mol		

Ecuación química ajustada	2 Fe	+	3/2 O ₂	→	Fe ₂ O ₃
Estequiometría de la reacción química	2 mol	+	3/2 mol	→	1 mol
Datos	m = 200 g se oxida el 5 %				
Incógnitas					¿m Fe₂O₃?

2°. Masa de Fe que se oxida , en g $\xrightarrow{2^\circ}$ cantidad de Fe, en mol:

94

2°. Masa de Fe que se oxida , en g $\xrightarrow{2^\circ)}$ cantidad de Fe, en mol:

2°. Masa de Fe que se oxida, en g $\xrightarrow{2^\circ}$ cantidad de Fe, en mol:

Como la masa molar del Fe es 55,8 $\frac{g}{mol}$, entonces:

n de Fe=10 g Fe
$$\cdot \frac{1 \text{mol Fe}}{55,8 \text{ g Fe}} = 0,0 \text{ mol Fe}$$

3°. Cantidad de Fe, en mol $\xrightarrow{3^\circ}$ cantidad de Fe₂O₃, en mol, a través del dato de la ecuación química ajustada que proporciona que 2 mol de Fe origina 1 mol de Fe₂O₃:

n de
$$Fe_2O_3 = 0$$
, mol $Fe_2O_3 = 0$, mol $Fe_2O_3 = 0$, mol Fe_2O_3

2°. Masa de Fe que se oxida, en g $\xrightarrow{2^\circ}$ cantidad de Fe, en mol:

Como la masa molar del Fe es 55,8 $\frac{g}{mol}$, entonces:

n de Fe=10 g Fe
$$\cdot \frac{1 \text{mol Fe}}{55,8 \text{ g Fe}} = 0,18 \text{ mol Fe}$$

3°. Cantidad de Fe, en mol $\xrightarrow{3^\circ}$ cantidad de Fe₂O₃, en mol, a través del dato de la ecuación química ajustada que proporciona que 2 mol de Fe origina 1 mol de Fe₂O₃:

n de Fe₂O₃ = 0,18 mol Fe ·
$$\frac{1 \text{mol Fe}_2 \text{O}_3}{\text{mol Fe}}$$
 = 0,0 mol Fe₂O₃

2°. Masa de Fe que se oxida, en g $\xrightarrow{2^\circ}$ cantidad de Fe, en mol:

Como la masa molar del Fe es 55,8 $\frac{g}{mol}$, entonces:

n de Fe=10 g Fe
$$\cdot \frac{1 \text{mol Fe}}{55,8 \text{ g Fe}} = 0,18 \text{ mol Fe}$$

3°. Cantidad de Fe, en mol $\xrightarrow{3^\circ}$ cantidad de Fe₂O₃, en mol, a través del dato de la ecuación química ajustada que proporciona que 2 mol de Fe origina 1 mol de Fe₂O₃:

n de
$$Fe_2O_3 = 0.18 \text{ mol Fe} \cdot \frac{1 \text{mol Fe}_2O_3}{2 \text{ mol Fe}} = 0.00 \text{ mol Fe}_2O_3$$

2°. Masa de Fe que se oxida , en g $\xrightarrow{2^\circ}$ cantidad de Fe, en mol:

Como la masa molar del Fe es 55,8 $\frac{g}{mol}$, entonces:

n de Fe=10 g Fe
$$\cdot \frac{1 \text{mol Fe}}{55,8 \text{ g Fe}} = 0,18 \text{ mol Fe}$$

3°. Cantidad de Fe, en mol $\xrightarrow{3^\circ)}$ cantidad de Fe₂O₃, en mol, a través del dato de la ecuación química ajustada que proporciona que 2 mol de Fe origina 1 mol de Fe₂O₃:

n de Fe₂O₃ = 0,18 mol Fe ·
$$\frac{1 \text{mol Fe}_2\text{O}_3}{2 \text{ mol Fe}}$$
 = 0,09 mol Fe₂O₃

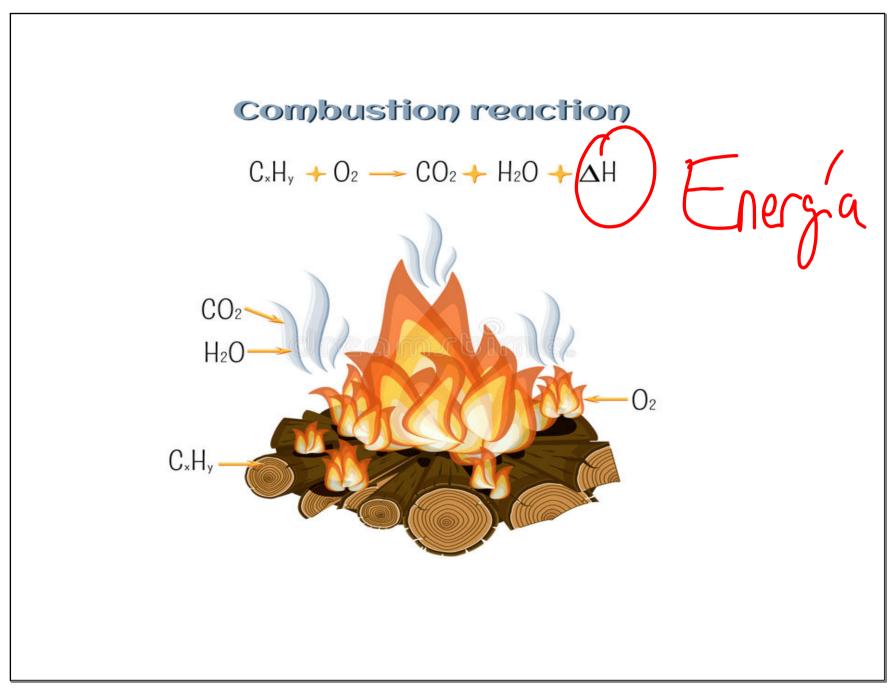
 4° . Cantidad de Fe₂O₃, en mol $\xrightarrow{4^{\circ}}$ masa de Fe₂O₃, en g:

Como la masa molar del Fe_2O_3 es $\frac{g}{mol}$, entonces

$$m de Fe_2O_3 = 0,09 mol Fe_2O_3 \cdot \frac{g Fe_2O_3}{1 mol Fe_2O_3} = 14, \sqrt{g Fe_2O_3}$$

 4° . Cantidad de Fe₂O₃, en mol $\xrightarrow{4^{\circ}}$ masa de Fe₂O₃, en g:

Como la masa molar del Fe_2O_3 es $\frac{g}{mol}$ 159,6, entonces:


m de Fe₂O₃ = 0,09 mol Fe₂O₃
$$\cdot \frac{159,6 \text{ g Fe}_2\text{O}_3}{1 \text{ mol Fe}_2\text{O}_3} = 14,0 \text{ g Fe}_2\text{O}_3$$

 4° . Cantidad de Fe₂O₃, en mol $\xrightarrow{4^{\circ}}$ masa de Fe₂O₃, en g:

Como la masa molar del Fe_2O_3 es $\frac{g}{mol}$ 159,6, entonces:

m de Fe₂O₃ = 0,09 mol Fe₂O₃
$$\cdot \frac{159,6 \text{ g Fe}_2\text{O}_3}{1 \text{mol Fe}_2\text{O}_3} = 14,4 \text{ g Fe}_2\text{O}_3$$

PRINCIPIOS DE COMBUSTION

QUIMICA DE LA COMBUSTION

REACCION DE COMBUSTION

Combustible: Material que libera energía, cuyo principales componentes son C y H.

Oxidante: El aire cuya composición es 79% N₂ y 21% O₂.

Productos de combustión: Compuestos resultado de la reacción de combustión.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

La ecuación de reacción presenta el resultado inicial y final, no indica el camino real de la reacción que involucra varias etapas.

Ejemplo: Calcula la masa de CO₂ producida al quemar 1,00 gramo de C₄H₁₀.

Ejemplo: Calcula la masa de CO₂ producida al quemar 1,00 gramo de C₄H₁₀.

Ejemplo: Calcula la masa de CO₂ producida al quemar 1,00 gramo de C₄H₁₀.

Para la reacción de combustión del butano (C₄H₁₀) la ecuación ajustada es:

$$2C_4H_{10}(I) + \bigcirc O_2(g) \longrightarrow \bigcirc CO_2(g) + \bigcirc H_2O(g)$$

Ejemplo: Calcula la masa de CO₂ producida al quemar 1,00 gramo de C₄H₁₀.

Para la reacción de combustión del butano (C₄H₁₀) la ecuación ajustada es:

$$2C_4H_{10}(I) + O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(g)$$

Ejemplo: Calcula la masa de CO₂ producida al quemar 1,00 gramo de C₄H₁₀.

Para la reacción de combustión del butano (C₄H₁₀) la ecuación ajustada es:

$$2C_4H_{10}(I) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(g)$$

Para la reacción de combustión del butano (C₄H₁₀) la ecuación ajustada es:

$$2C_4H_{10}(I) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(g)$$

Para ello antes que nada debemos calcular cuantos moles de butano tenemos en 1 g de la muestra:

$$(1.0 \text{ g de C}_4H_{10}) \times \frac{1 \text{ mol de C}_4H_{10}}{58.0 \text{ g de C}_4H_{10}} = 1.72 \times 10^{\circ} \text{moles de C}_4H_{10}$$

Para la reacción de combustión del butano (C₄H₁₀) la ecuación ajustada es:

$$2C_4H_{10}(I) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(g)$$

Para ello antes que nada debemos calcular cuantas moles de butano tenemos en 1 g de la muestra:

$$(1.0 \text{ g de C}_4H_{10}) \times \frac{1 \text{ mol de C}_4H_{10}}{58.0 \text{ g de C}_4H_{10}} = 1.72 \times 10^{-2} \text{ moles de C}_4H_{10}$$

de manera que, si la relación estequiométrica entre el C₄H₁₀ y el CO₂ es:

$$\frac{8 \text{ moles de CO}_2}{2 \text{ moles de C}_4 \text{H}_{10}} \times 1.72 \times 10^{-2} \text{ moles de C}_4 \text{H}_{10} = 6.88 \times 10^{\circ} \text{moles de CO}_2$$

$$6.88 \times 10^{\circ}$$
 moles de $CO_2 \times \frac{44 \text{ g de } CO_2}{1 \text{ mol de } CO_2} = \bigcirc \text{g de } CO_2$

$$\frac{8 \text{ moles de CO}_2}{2 \text{ moles de C}_4 \text{H}_{10}} \times 1.72 \times 10^{-2} \text{ moles de C}_4 \text{H}_{10} = 6.88 \times 10^{-2} \text{ moles de CO}_2$$

$$6.88 \times 10^{-2}$$
 moles de $CO_2 \times \frac{\bigcirc g \text{ de } CO_2}{1 \text{ mol de } CO_2} = \bigcirc g \text{ de } CO_2$

$$\frac{8 \text{ moles de CO}_2}{2 \text{ moles de C}_4 \text{H}_{10}} \times 1.72 \times 10^{-2} \text{ moles de C}_4 \text{H}_{10} = 6.88 \times 10^{-2} \text{ moles de CO}_2$$

$$6.88 \times 10^{-2}$$
 moles de $CO_2 \times \frac{44 \text{ g de } CO_2}{1 \text{ mol de } CO_2} = \bigcirc \text{g de } CO_2$

$$\frac{8 \text{ moles de CO}_2}{2 \text{ moles de C}_4 \text{H}_{10}} \times 1.72 \times 10^{-2} \text{ moles de C}_4 \text{H}_{10} = 6.88 \times 10^{-2} \text{ moles de CO}_2$$

$$6.88 \times 10^{-2}$$
 moles de $CO_2 \times \frac{44 \text{ g de } CO_2}{1 \text{ mol de } CO_2} = 3.03 \text{ g de } CO_2$

Por ejemplo en la ecuación ajustada siguiente:

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

la producción de dos moles de agua requieren el consumo de 2 moles de H₂ un mol de O₂.

Por lo tanto, en esta reacción tenemos que: "2 moles de H₂, 1 mol de O₂ y 2 moles de H₂O" son cantidades estequiométricamente equivalentes.

¿Cuántos moles de H₂O se producirán en una reacción donde tenemos 1,57 moles de O₂, suponiendo que tenemos hidrógeno de sobra?

(
$$\bigcirc$$
 moles de O₂) x $\frac{2 \text{ moles de H}_2\text{O}}{1 \text{ mol de H}_2}$ = \bigcirc moles de H₂O

¿Cuántos moles de H₂O se producirán en una reacción donde tenemos 1,57 moles de O₂, suponiendo que tenemos hidrógeno de sobra?

(
$$\bigcirc$$
 moles de O₂) x $\frac{2 \text{ moles de H}_2\text{O}}{1 \text{ mol de H}_2} = \bigcirc$ moles de H₂O

El cociente:

es la relación estequiométrica entre el H₂O y el O₂ de la ecuación ajustada de esta reacción.

¿Cuántos moles de H₂O se producirán en una reacción donde tenemos 1,57 moles de O₂, suponiendo que tenemos hidrógeno de sobra?

$$(1,57 \text{ moles de } O_2) \times \frac{2 \text{ moles de } H_2O}{1 \text{ mol de } H_2} = 0 \text{ moles de } H_2O$$

El cociente:

es la relación estequiométrica entre el H₂O y el O₂ de la ecuación ajustada de esta reacción.

¿Cuántos moles de H₂O se producirán en una reacción donde tenemos 1,57 moles de O₂, suponiendo que tenemos hidrógeno de sobra?

$$(1,57 \text{ moles de O}_2) \times \frac{2 \text{ moles de H}_2\text{O}}{1 \text{ mol de H}_2} = 3,14 \text{ moles de H}_2\text{O}$$

El cociente:

es la relación estequiométrica entre el H₂O y el O₂ de la ecuación ajustada de esta reacción.

1. Cálculos masa - masa Inicio

Las cantidades de los datos y de las incógnitas están expresadas en gramos.

El ácido clorhídrico reacciona con el dióxido de manganeso para producir dicloruro de manganeso, cloro y agua. ¿Cuántos gramos de dicloruro de manganeso se obtienen cuando reaccionan 7,3 g de ácido clorhídrico con dióxido de manganeso?

1. Cálculos masa - masa Inicio

Las cantidades de los datos y de las incógnitas están expresadas en gramos.

El ácido clorhídrico reacciona con el dióxido de manganeso para producir dicloruro de manganeso, cloro y agua. ¿Cuántos gramos de dicloruro de manganeso se obtienen cuando reaccionan 7,3 g de ácido clorhídrico con dióxido de manganeso?

Se identifican los reactivos y los productos y se escribe y ajusta la ecuación química que describe el proceso.

Ecuación ajustada:	MnO ₂ +	4 HCl →	MnCl ₂ +	Cl ₂ +	2 H ₂ O
Estequiometría	1 mol	4 mol	1 mol	1 mol	2 mol

1. Cálculos masa - masa Inicio

Las cantidades de los datos y de las incógnitas están expresadas en gramos.

El ácido clorhídrico reacciona con el dióxido de manganeso para producir dicloruro de manganeso, cloro y agua. ¿Cuántos gramos de dicloruro de manganeso se obtienen cuando reaccionan 7,3 g de ácido clorhídrico con dióxido de manganeso?

Se identifican los reactivos y los productos y se escribe y ajusta la ecuación química que describe el proceso.

Ecuación ajustada:	MnO ₂ +	4 HCl →	MnCl ₂ +	Cl ₂ +	2 H ₂ O
Estequiometría	1 mol	4 mol	1 mol	1 mol	2 mol
Datos		masa 7,3 g			
Incógnitas			masa		_

$$masa\;HCl \xrightarrow{\quad a\quad} mol\;HCl \xrightarrow{\quad b\quad} mol\;MnCl_2 \xrightarrow{\quad c\quad} masa\;MnCl_2$$

En cada paso se utilizará el correspondiente factor de conversión.

$$n_{HCl} = 7.3 \text{ g HCl}$$
 $\frac{1 \text{ mol HCl}}{36.5 \text{ g HCl}} = \text{mol HCl}$

$$masa\;HCl \xrightarrow{a} mol\;HCl \xrightarrow{b} mol\;MnCl_2 \xrightarrow{c} masa\;MnCl_2$$

En cada paso se utilizará el correspondiente factor de conversión.

$$n_{HCI} = 7.3 \text{ g HC1} \quad \frac{1 \text{mol HCl}}{36.5 \text{ g HCl}} = 0.2 \text{ mol HCl}$$

Masa molar: 1 mol HCl = 36,5 g HCl

$$masa \ HCl \xrightarrow{a} mol \ HCl \xrightarrow{b} mol \ MnCl_2 \xrightarrow{c} masa \ MnCl_2$$

En cada paso se utilizará el correspondiente factor de conversión.

a) masa HCl
$$\stackrel{a}{\longrightarrow}$$
 mol HCl

$$n_{HCl} = 7.3 \text{ g HCl} \quad \frac{1 \text{mol HCl}}{36.5 \text{ g HCl}} = 0.2 \text{ mol HCl}$$

Masa molar: 1 mol HCl = 36,5 g HCl

b) mol HCl \xrightarrow{b} mol MnCl₂

$$n_{\text{MnCl}_2} = 0.2 \text{ mol HCl } \frac{1 \text{mol MnCl}_2}{4 \text{mol HCl}} = \text{mol MnCl}_2$$

Ecuación química ajustada:

Omol HCl proporcionan 1 mol MnCl₂

masa HCl
$$\xrightarrow{a}$$
 mol HCl \xrightarrow{b} mol MnCl₂ \xrightarrow{c} masa MnCl₂

En cada paso se utilizará el correspondiente factor de conversión.

a) masa HCl
$$\xrightarrow{a}$$
 mol HCl
 $n_{HCl} = 7.3 \text{ g HCl}$ $\frac{1 \text{mol HCl}}{36.5 \text{ g HCl}} = 0.2 \text{ mol HCl}$

Masa molar: 1 mol HCl = 36,5 g HCl

b) mol HCl
$$\xrightarrow{b}$$
 mol MnCl₂
 $n_{MnCl_2} = 0.2 \text{ mol HCl} \frac{1 \text{ mol MnCl}_2}{4 \text{ mol HCl}} = 0.05 \text{ mol MnCl}_2$

Ecuación química ajustada: 4 mol HCl proporcionan 1 mol MnCl₂

$$masa\;HCl \xrightarrow{\quad a\quad} mol\;HCl \xrightarrow{\quad b\quad} mol\;MnCl_2 \xrightarrow{\quad c\quad} masa\;MnCl_2$$

En cada paso se utilizará el correspondiente factor de conversión.

$$n_{HCl} = 7.3 \text{ g HCl} \quad \frac{1 \text{mol HCl}}{36.5 \text{ g HCl}} = 0.2 \text{ mol HCl}$$

b) mol HCl \xrightarrow{b} mol MnCl₂ $n_{MnCl_2} = 0.2 \text{ mol HCl } \frac{1 \text{ mol MnCl}_2}{4 \text{ mol MnCl}_2} = 0.05 \text{ mol MnCl}_2$

c) mol MnCl₂ \xrightarrow{c} masa MnCl₂

$$m_{MnCl_2} = 0.05 \text{ mol MnCl}_2 \frac{126.0 \text{ g MnCl}_2}{1 \text{mol MnCl}_2} = \bigcirc \text{g MnCl}_2$$

Masa molar: 1 mol HCl = 36,5 g HCl

Ecuación química ajustada:

4 mol HCl proporcionan 1 mol MnCl₂

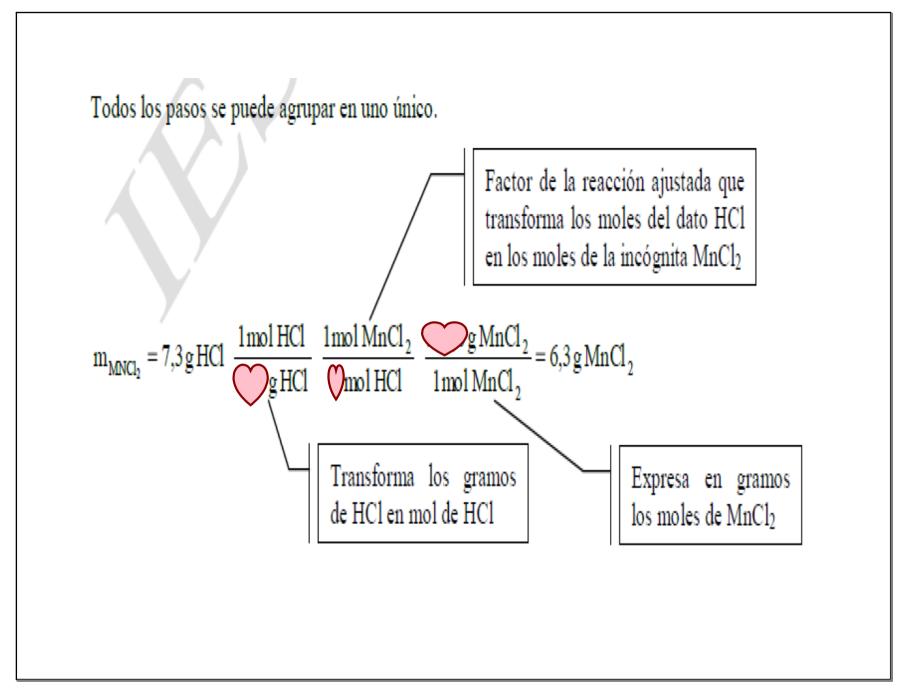
Masa molar: 1 mol MnCl₂ = g MnCl₂

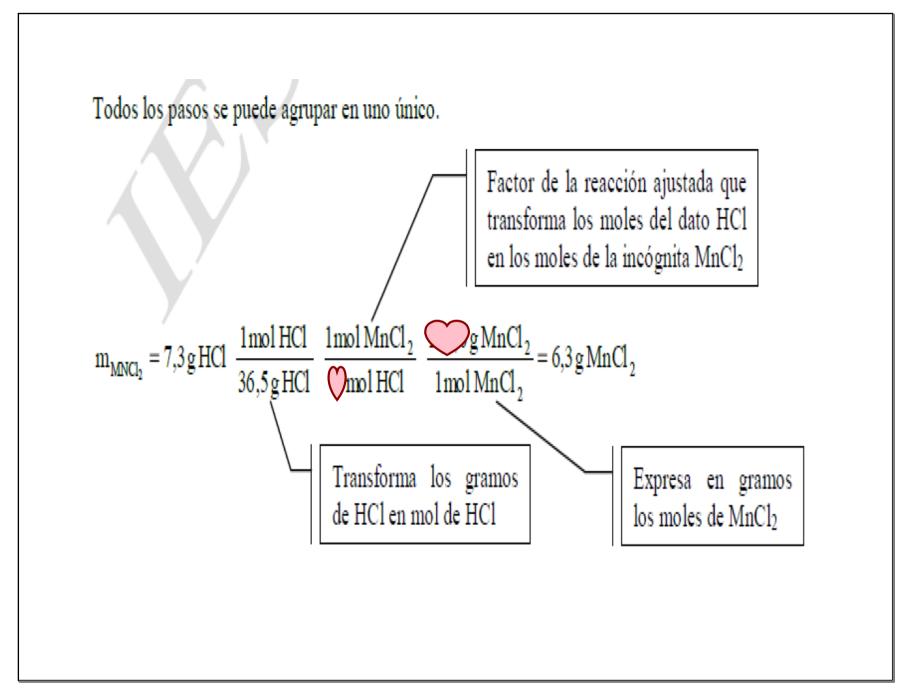
$$masa \ HCl \xrightarrow{a} mol \ HCl \xrightarrow{b} mol \ MnCl_2 \xrightarrow{c} masa \ MnCl_2$$

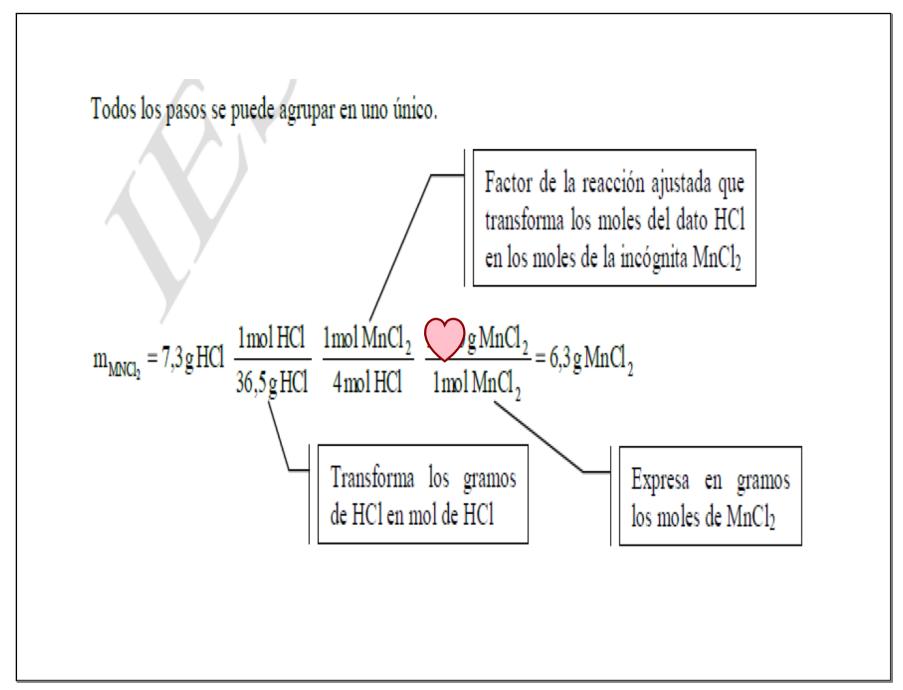
En cada paso se utilizará el correspondiente factor de conversión.

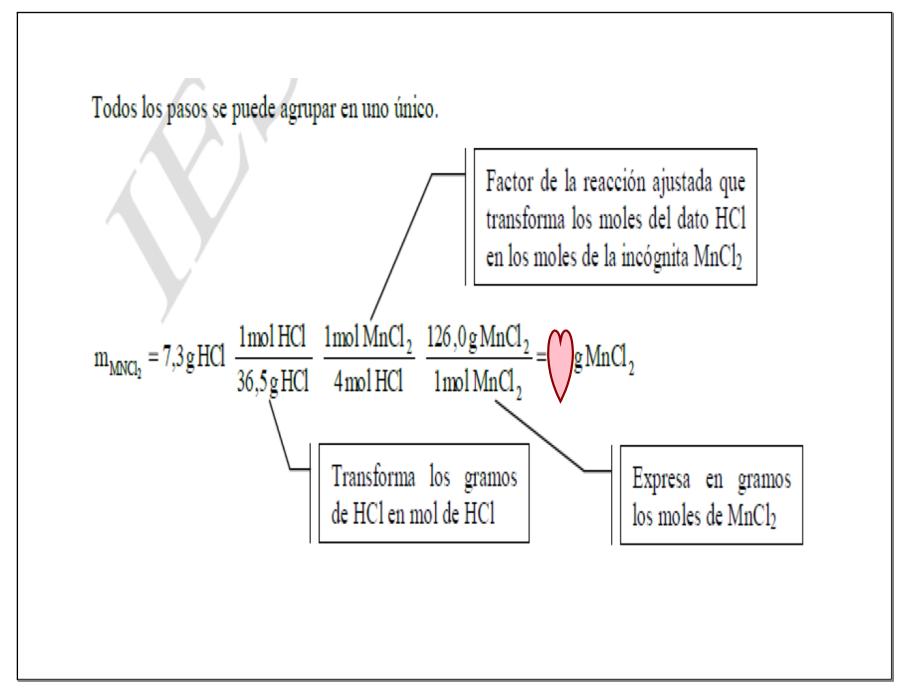
$$n_{HCI} = 7.3 \text{ g HCl} \quad \frac{1 \text{mol HCl}}{36.5 \text{ g HCl}} = 0.2 \text{ mol HCl}$$

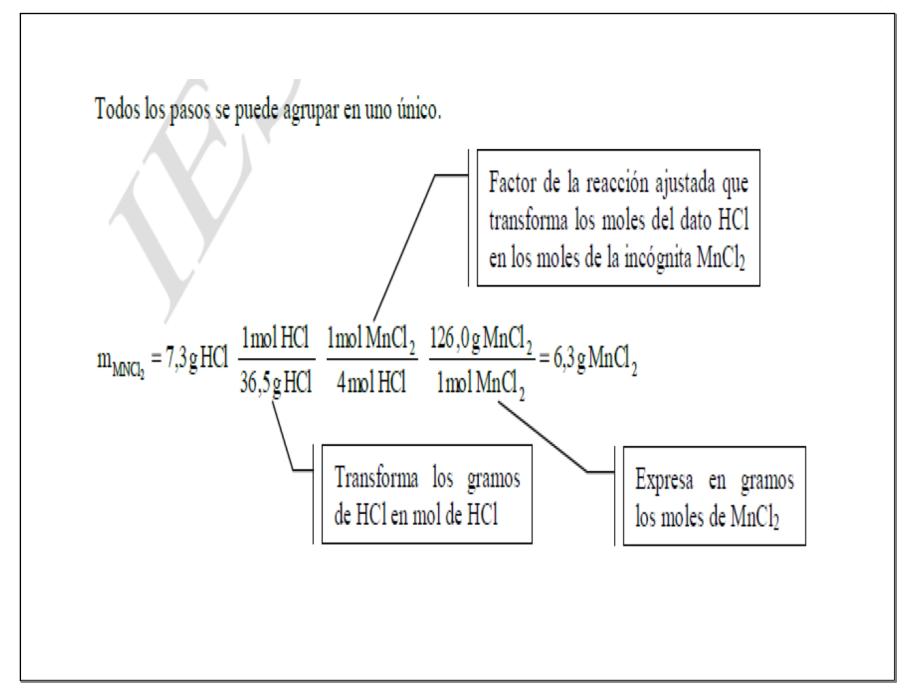
Masa molar: 1 mol HCl = 36,5 g HCl


b) mol HCl \xrightarrow{b} mol MnCl₂ $n_{MnCl_2} = 0.2 \text{ mol HCl } \frac{1 \text{ mol MnCl}_2}{4 \text{ mol MnCl}_2} = 0.05 \text{ mol MnCl}_2$


Ecuación química ajustada: 4 mol HCl proporcionan 1 mol MnCl₂


c) mol MnCl₂ \xrightarrow{c} masa MnCl₂

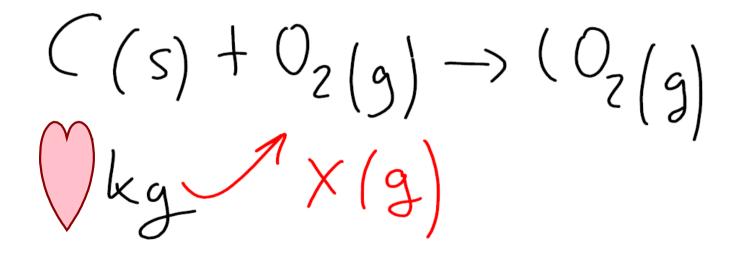

$$m_{\rm MnCl_2} = 0.05\,{\rm mol\,MnCl_2} \frac{126.0\,{\rm g\,MnCl_2}}{1\,{\rm mol\,MnCl_2}} = 6.3\,{\rm g\,MnCl_2}$$


Masa molar: 1 mol MnCl₂ = 126,0 g MnCl₂

34

El carbón se quema con oxígeno produciendo dióxido de carbono mediante una reacción que podemos expresar así:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$


- a) ¿Qué masa (g) de oxígeno hará falta para quemar 6 kg de carbón?
- b) ¿Qué masa de dióxido de carbono se obtendrá en ese caso?

34

El carbón se quema con oxígeno produciendo dióxido de carbono mediante una reacción que podemos expresar así:

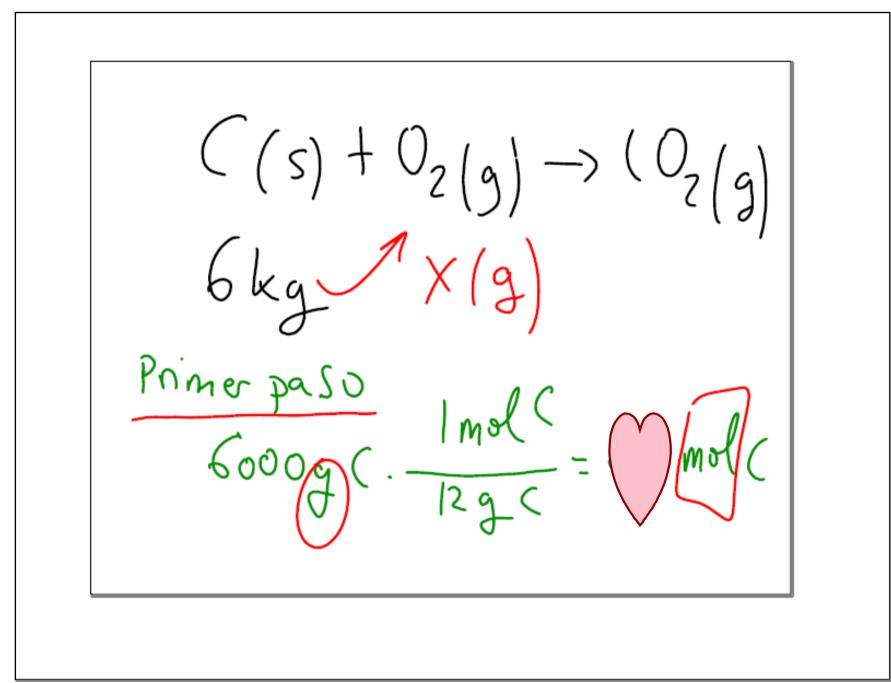
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

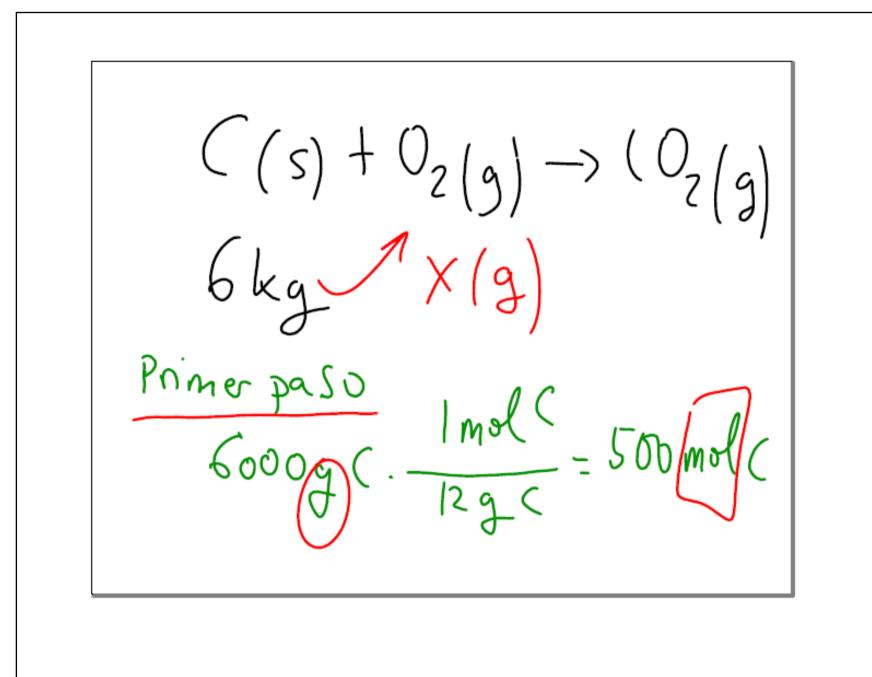
- a) ¿Qué masa (g) de oxígeno hará falta para quemar 6 kg de carbón?
- b) ¿Qué masa de dióxido de carbono se obtendrá en ese caso?

34

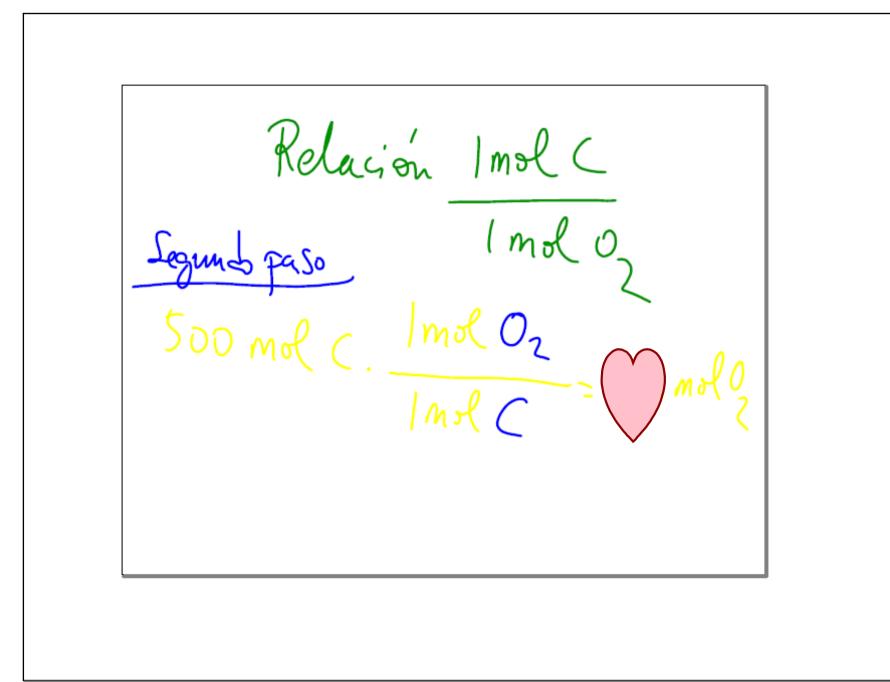
El carbón se quema con oxígeno produciendo dióxido de carbono mediante una reacción que podemos expresar así:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$


- a) ¿Qué masa (g) de oxígeno hará falta para quemar 6 kg de carbón?
- b) ¿Qué masa de dióxido de carbono se obtendrá en ese caso?

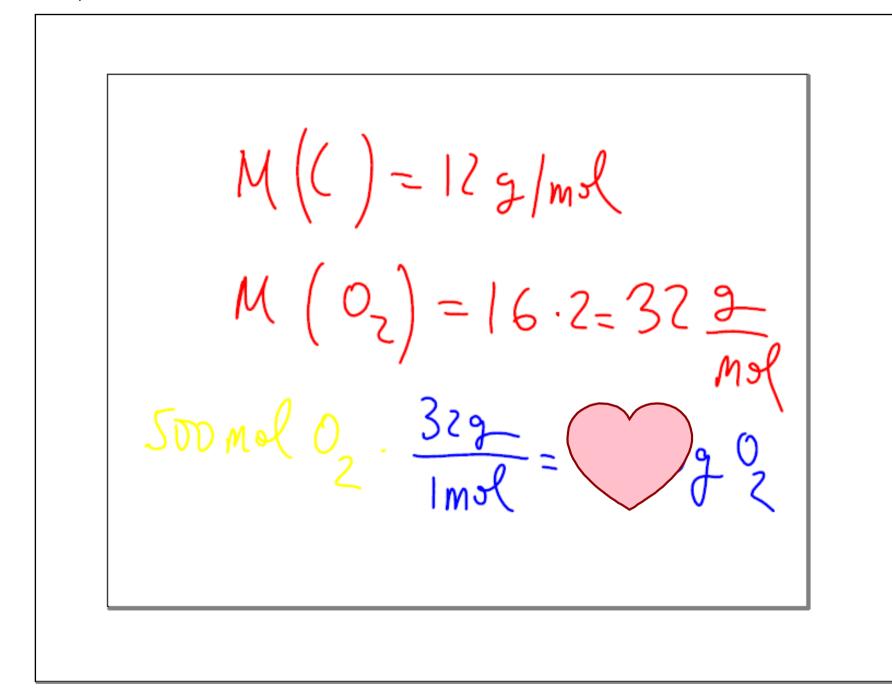

$$C(s) + O_2(g) - O_2(g)$$

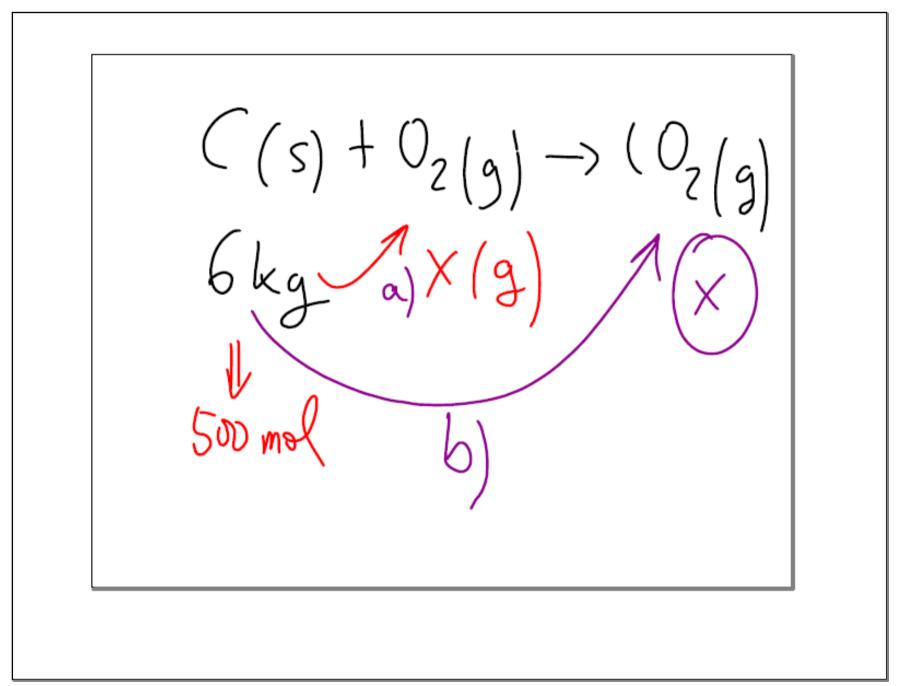
 $6 kg x(g)$

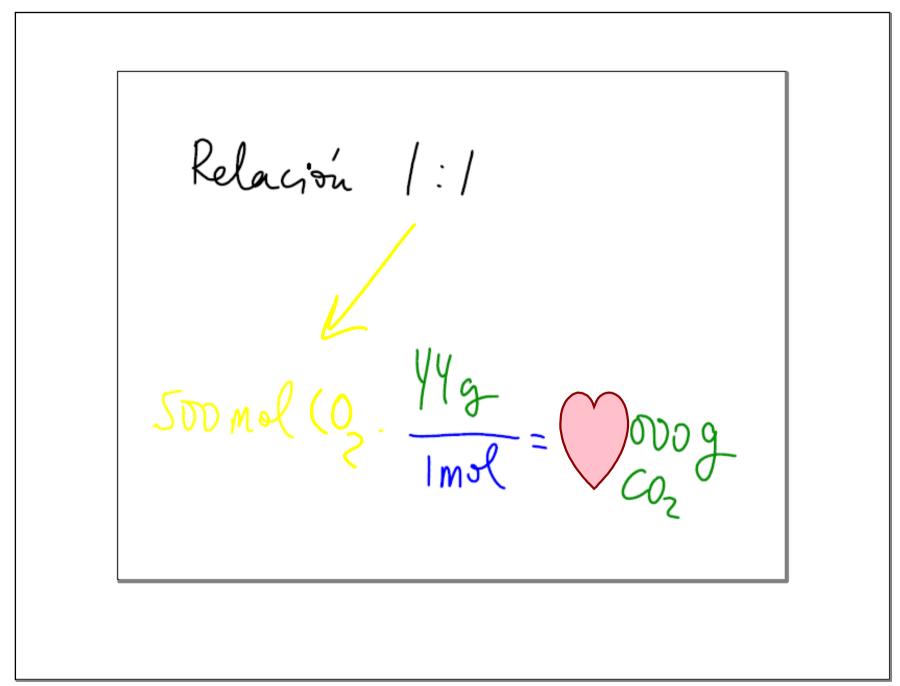

a)
$$M(() = 12g/msl$$

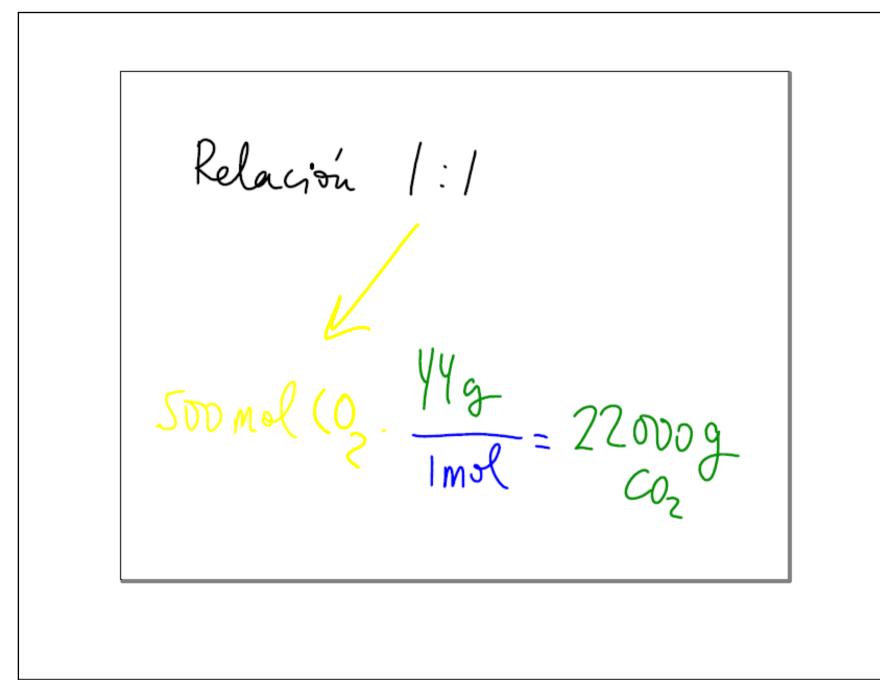
 $M(O_2) = 16.2 = 32g$
 $M(O_2) = 12 + 16.2 = 0g$
 $M(O_2) = 12 + 16.2 = 0g$

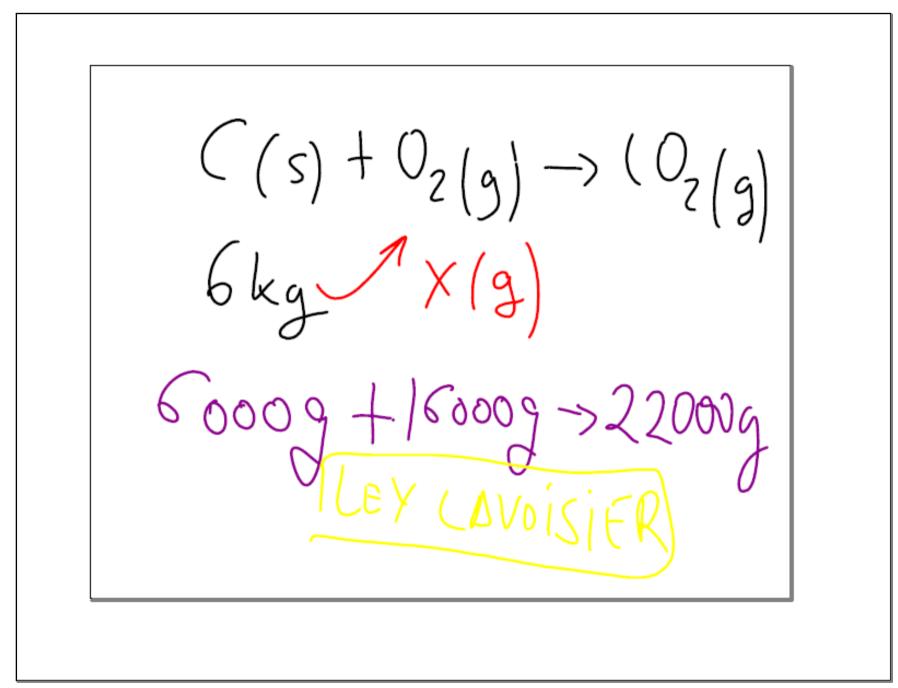
January 08, 2020


M(()=12g/msl) $M(0_2)=16.2=329$ M ((0) = 12+16.2=44 gr









$$M(() = 12 g/msl)$$
 $M(O_2) = 16.2 = 32 g msl)$
 $M(O_2) = 16.2 = 32 g msl)$
 $M(O_2) = 16000g O_2$

