
Concepto de Densidad

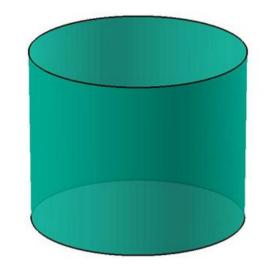
"La densidad de un cuerpo es el cociente entre

su masa y su volumen".

Representa la masa que correspondería a la unidad de volumen de la sustancia considerada.

Su unidad en el SI es el kg/m³.

El Concepto de Densidad


"La Densidad es la relacion entre la masa y el volumen de un cuerpo"

m = 100 Kg

 $V = 2.5 \text{ m}^3$

Densidad es igual a masa entre volumen

$$d = \frac{m}{V}$$

$$d = \frac{100 \text{ kg}}{2.5 \text{ m}^3}$$

 $d = 40 \text{ kg/m}^3$

Unidad 1: Fluidos y Ondas

Segundo Año de Bachillerato

Prof. Marvin Cecilio Ramirez

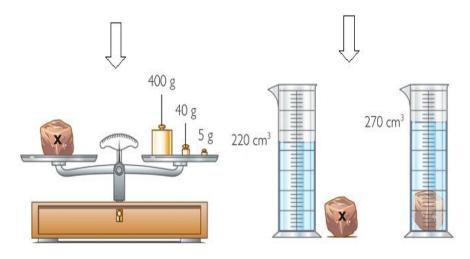
¿Qué es la densidad?

La densidad de una sustancia es la relación que existe entre su masa y el volumen que ocupa

Densidad del mercurio = 13,6 Kg/L

Densidad del alcohol = 0,8 Kg/L

Densidad del aceite = 0,9 Kg/L

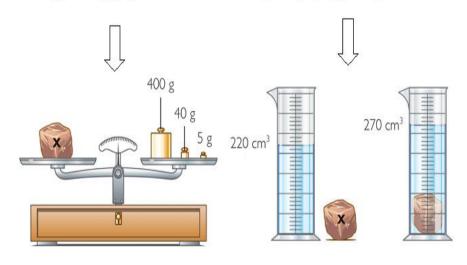


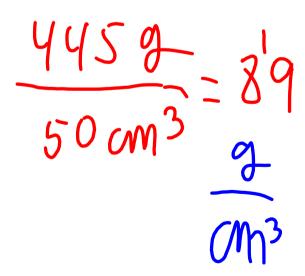
1° Se calcula la masa

Se calcula el volumen

Se divide la masa entre el volumen

DENSIDAD: Es la masa de un cuerpo por uni-


dad de volumen


 $d = \frac{m}{v}$

1° Se calcula la masa

Se calcula el volumen

Se divide la masa entre el volumen

Sustancia	Densidad (g/cm³)
Aire	0'0013
Hielo	0′92
Agua	1
Agua de mar	1′04
Aluminio	2′7
Hierro	7′9
Cobre	8′4
Mercurio	13′6
Oro	19′3

El aire de una habitación tiene una densidad de 1,225 en unidades del SI. Exprésala en g/L.

$$M_3$$
 M_3 $= 3$

El aire de una habitación tiene una densidad de 1,225 en unidades del SI.

$$\frac{1}{225} \frac{1}{m^3} \cdot \frac{1}{1} \frac{1}{1$$

El aire de una habitación tiene una densidad de 1,225 en unidades del SI. Exprésala en g/L.

$$1,225 \text{ kg/m}^3 \cdot \frac{1000 \text{ g}}{1 \text{ kg}} \cdot \frac{1 \text{ m}^3}{10^3 \text{ L}} = 1,225 \text{ g/L}$$

La densidad del agua del mar es 1,13 g/mL. Exprésala en kg/m³.

La densidad del agua del mar es 1,13 g/mL. Exprésala en kg/m³.

Kg m³

La densidad del agua del mar es 1,13 g/mL. Exprésala en kg/m³.

1,3 g/mL ·
$$\frac{1000 \text{ mL}}{1 \text{ L}}$$
 · $\frac{1 \text{ kg}}{1000 \text{ g}}$ = 1,3 kg/L
1,3 kg/L · $\frac{10^3 \text{ L}}{1 \text{ m}^3}$ = 1380 kg/m³

Calcula la densidad de un cuerpo cuya masa es 15 g y que ocupa un volumen de 4 mL. Recuerda que la densidad se obtiene dividiendo la masa del cuerpo entre su volumen.

Calcula la densidad de un cuerpo cuya masa es 15 g y que ocupa un volumen de 4 mL. Recuerda que la densidad se obtiene dividiendo la masa del cuerpo entre su volumen.

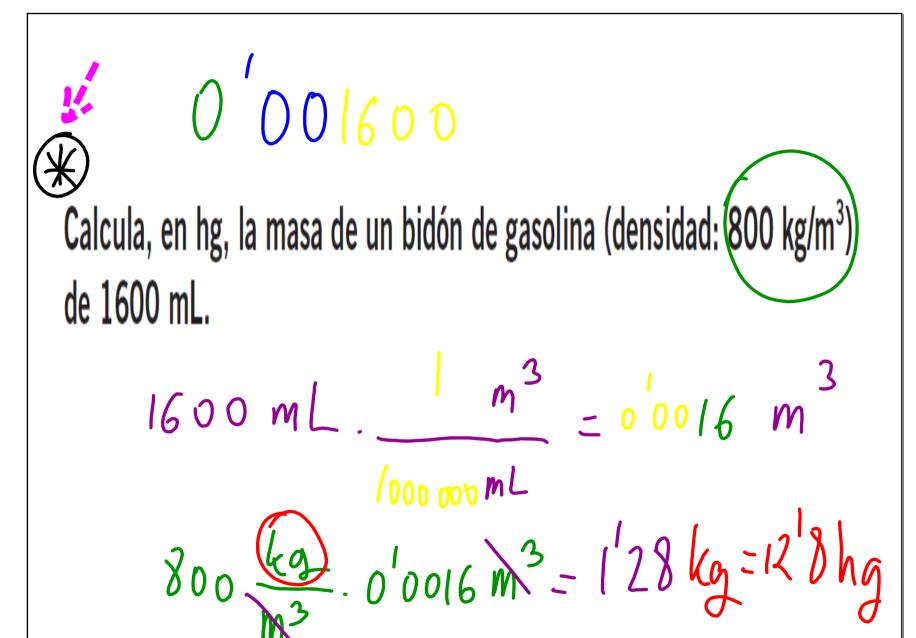
$$d = \frac{m}{V} = \frac{15 \,\text{g}}{4 \,\text{mL}} = 3,75 \,\text{g/mL}$$

Calcula, en hg, la masa de un bidón de gasolina (densidad: 800 kg/m³) de 1600 mL.

1218

Calcula, en hg, la masa de un bidón de gasolina (densidad: 800 kg/m³) de 1600 mL.

Ayuda 800 kg ms


 $800 \frac{kg}{m^3} \cdot \frac{10hg}{1kg} \cdot \frac{1m^3}{10000000mL} = 0000 \frac{hg}{mL}$

Calcula, en hg, la masa de un bidón de gasolina (densidad: 800 kg/m³) de 1600 mL.

$$\frac{300 \, \text{kz}}{\text{m}^3} \, \text{m}$$

$$800 \frac{kg}{m^3} \cdot \frac{10hg}{1kg} = 0008 \frac{hg}{mL}$$

Calcula, en hg, la masa de un bidón de gasolina (densidad: 800 kg/m³) de 1600 mL.

Calcula, en hg, la masa de un bidón de gasolina (densidad: 800 kg/m³) de 1600 mL.

Calculamos primero la masa en kg. Hay que pasar las unidades al SI.

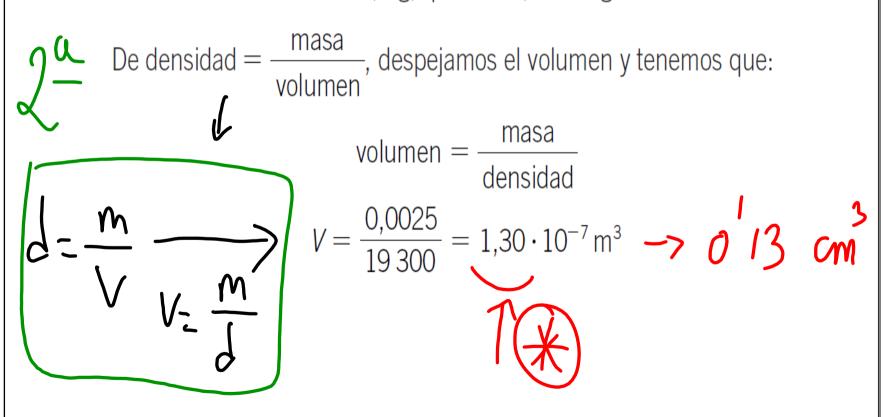
De densidad =
$$\frac{masa}{volumen}$$
, despejamos la masa y tenemos que:

 $m=d\cdot V$
 $m=d\cdot V$

De densidad = $\frac{masa}{volumen}$, despejamos la masa y tenemos que:

 $m=800 \text{ kg/m}^3 \cdot 0,0016 \text{ m}^3 = 1,28 \text{ kg}$

Como 1 kg = 10 hg; 1,28 kg = 1,28 kg $\cdot \frac{10 \text{ hg}}{1 \text{ kg}} = 12,8 \text{ hg}$


$$2^{1}59.\frac{1 kg}{1000g} = 0'0025 kg$$

$$\frac{19300 kg}{100000012953}$$

$$\frac{1}{100000012953}$$

$$\frac{1}{12953.10^{-7}}$$

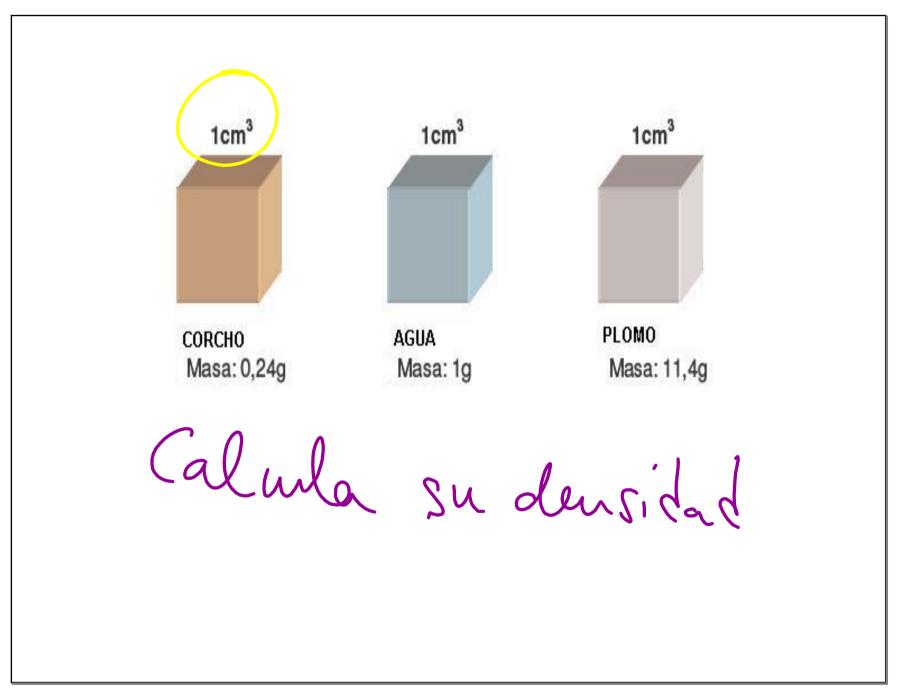
La masa del anillo es de 2,5 g, que son 0,0025 kg.

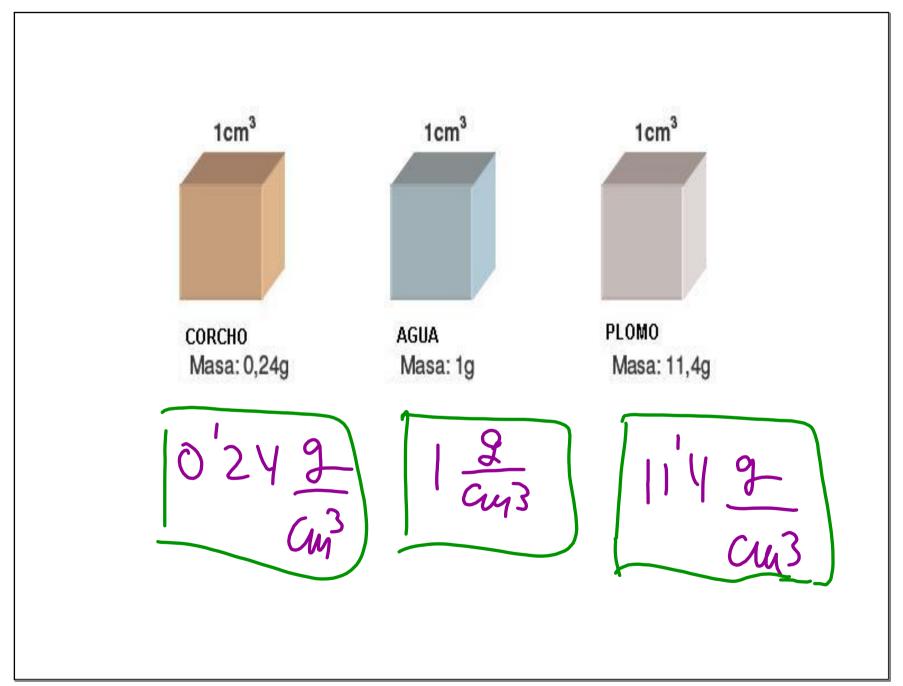
Una plancha de aluminio de 1 cm de espesor tiene una masa de 27 kg por m². Expresa esta cantidad en g/cm².

7850
$$\frac{kg}{m^3} = \frac{000705}{000000} \frac{kg}{(m^3)} = \frac{000705}{000785} \frac{kg}{(m^3)} = 00785 \frac{kg}{000785} = 00785 \frac{kg}{000785} = 000785 \frac{kg}{000785} = 0000785 \frac{kg}{000785} = 0000785 \frac{kg}{000785} = 0000785 \frac{kg}{000785} = 0000$$

Densidad del acero: 7850 kg/m³. Densidad del oro: 19 300 kg/m³.

Vamos a calcular la masa de ambas piezas, pero antes de realizar el cálculo podemos adelantar que, como la densidad del oro es mucho mayor que la del acero, a igualdad de volumen, la masa de oro será mayor que la masa de acero.


Las piezas tienen un volumen de 10 cm³, que son 0,000 01 m³


De densidad =
$$\frac{\text{masa}}{\text{volumen}}$$
, despejamos la masa y tenemos que:

masa = densidad · volumen

$$m_{\text{acero}} = 7850 \cdot 0,000 \, 01 = 0,0785 \, \text{kg}$$
 $m_{\text{oro}} = 19 \, 300 \cdot 0,000 \, 01 = 0,193 \, \text{kg}$

BLOG Densidad.notebook

1.-/ La densidad de la gasolina es 680 kg/m³. Exprésala en g/L y g/cm³.

Sol: 680 g/L; 0,68 g/cm³

2.-/ La densidad de la sangre es 1,5 g/cm³. Exprésala en g/mL y kg/m³.

Sol: 1,5 g/mL; 1500 kg/m³

3.-/ La densidad del aire es 1,3 kg/m³. ¿Qué masa de aire cabe en una habitación de dimensiones 4 m x 3 m x 2,5 m?

Sol: 39 kg de aire

4.-/ Sabiendo que una esfera maciza de 3 cm de radio tiene una masa de 12,3 g, calcula la densidad del material del que está hecho la esfera.

Sol: 0,11 g/cm³

- 1.-/ La densidad de la gasolina es 680 kg/m³. Exprésala en g/L y g/cm³.
- Sol: 680 g/L; 0,68 g/cm³
- 2.-/ La densidad de la sangre es 1,5 g/cm³. Exprésala en g/mL y kg/m³.
- Sol: 1,5 g/mL; 1500 kg/m³
- **3.-/** La densidad del aire es 1,3 kg/m³. ¿Qué masa de aire cabe en una habitación de dimensiones 4 m x 3 m x 2,5 m?
- Sol: 39 kg de aire
- **4.-/** Sabiendo que una esfera maciza de 3 cm de radio tiene una masa de 12,3 g, calcula la densidad del material del que está hecho la esfera.

Sol: 0,11 g/cm³ $1 / 680 \frac{kg}{m^3} \cdot \frac{1000 g}{1 kg} \cdot \frac{1m^3}{1000L} = 680 \frac{g}{L}$ $680 \frac{g}{L} \cdot \frac{1L}{1000 cm^3} = 0.68 \frac{g}{cm^3}$

1.-/ La densidad de la gasolina es 680 kg/m³. Exprésala en g/L y g/cm³.

Sol: 680 g/L; 0,68 g/cm³

2.-/ La densidad de la sangre es 1,5 g/cm³. Exprésala en g/mL y kg/m³.

Sol: 1,5 g/mL; 1500 kg/m³

3.-/ La densidad del aire es 1,3 kg/m 3 . ¿Qué masa de aire cabe en una habitación de dimensiones 4 m x 3 m x 2,5 m?

Sol: 39 kg de aire

Sol: 0,11 g/cm³

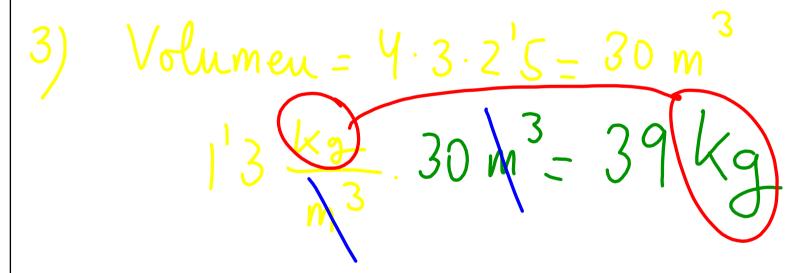
4.-/ Sabiendo que una esfera maciza de 3 cm de radio tiene una masa de 12,3 g, calcula la densidad del material del que está hecho la esfera.

 $\frac{2}{15} = \frac{9}{cm^3} = \frac{9}{1500} = \frac{9}{$

1.-/ La densidad de la gasolina es 680 kg/m³. Exprésala en g/L y g/cm³.

Sol: 680 g/L; 0,68 g/cm³

2.-/ La densidad de la sangre es 1,5 g/cm³. Exprésala en g/mL y kg/m³.


Sol: 1,5 g/mL; 1500 kg/m³

3.-/ La densidad del aire es 1,3 kg/m 3 . ¿Qué masa de aire cabe en una habitación de dimensiones 4 m x 3 m x 2,5 m?

Sol: 39 kg de aire

4.-/ Sabiendo que una esfera maciza de 3 cm de radio tiene una masa de 12,3 g, calcula la densidad del material del que está hecho la esfera.

Sol: 0,11 g/cm³

- 1.-/ La densidad de la gasolina es 680 kg/m³. Exprésala en g/L y g/cm³.
- Sol: 680 g/L; 0,68 g/cm³
- 2.-/ La densidad de la sangre es 1,5 g/cm³. Exprésala en g/mL y kg/m³.
- Sol: 1,5 g/mL; 1500 kg/m³
- **3.-/** La densidad del aire es 1,3 kg/m 3 . ¿Qué masa de aire cabe en una habitación de dimensiones 4 m x 3 m x 2,5 m?
- Sol: 39 kg de aire
- **4.-/** Sabiendo que una esfera maciza de 3 cm de radio tiene una masa de 12,3 g, calcula la densidad del material del que está hecho la esfera.
- Sol: 0,11 g/cm³

4)
$$V = \frac{4}{3}314.3 = 113 \text{ cm}^3$$

 $d = \frac{m}{V} = \frac{12^{1}39}{113 \text{ cm}^3} = 0^{1}11 \frac{9}{\text{cm}^3}$

BLOG_Densidad.notebook November 13, 2018

5.-/ Un cubo tiene 0,2 cm de arista. ¿Cabe 10 mL de alcohol dentro de él? Sol: No, el volumen del cubo es más pequeño.

6.-/ Una garrafa de 5 litros se llena con agua. ¿Qué masa de agua hay en la garrafa? Si la misma garrafa se llena de mercurio, ¿qué masa de mercurio hay en la garrafa? **Datos**: densidad del agua: 1 g/cm³; densidad del mercurio: 13,6 g/cm³.

Sol: 5 kg de agua ; 68 kg de mercurio.

7.-/ Completa la siguiente tabla:

Masa (g)	Volumen (L)	Densidad (g/cm³)	Sustancia
3400	5		
	1,5		Leche
237		7,9	

Datos:

Densidad de la gasolina = 0,68 g/cm³; de la leche = 1,03 g/cm³; del hierro = 7,9 g/cm³.

Masa (g)	Volumen (L)	Densidad (g/cm³)	Sustancia
3400	5	0,68	Gasolina
1545	1,5	1,03	Leche
237	0,03	7,9	Hierro

5.-/ Un cubo tiene 0,2 cm de arista. ¿Cabe 10 mL de alcohol dentro de él? Sol: No, el volumen del cubo es más pequeño.

6.-/ Una garrafa de 5 litros se llena con agua. ¿Qué masa de agua hay en la garrafa? Si la misma garrafa se llena de mercurio, ¿qué masa de mercurio hay en la garrafa? <u>Datos</u>: densidad del agua: 1 g/cm³; densidad del mercurio: 13,6 g/cm³.

Sol: 5 kg de agua; 68 kg de mercurio.

7.-/ Completa la siguiente tabla:

Masa (g)	Volumen (L)	Densidad (g/cm³)	Sustancia
3400	5		
	1,5		Leche
237		7,9	

Datos:

Densidad de la gasolina = 0,68 g/cm³; de la leche = 1,03 g/cm³; del hierro = 7,9 g/cm³.

Masa (g)	Volumen (L)	Densidad (g/cm³)	Sustancia
3400	5	0,68	Gasolina
1545	1,5	1,03	Leche
237	0,03	7,9	Hierro

$$V = 0'2.0'2.0'2 = 0'008 \text{ cm}^3$$
 $V = 0'2.0'2.0'2 = 0'008 \text{ cm}^3$
 $V = 0'008 \text{ mL}$

5.-/ Un cubo tiene 0,2 cm de arista. ¿Cabe 10 mL de alcohol dentro de él? Sol: No, el volumen del cubo es más pequeño.

6.-/ Una garrafa de 5 litros se llena con agua. ¿Qué masa de agua hay en la garrafa? Si la misma garrafa se llena de mercurio, ¿qué masa de mercurio hay en la garrafa? <u>Patos</u>: densidad del agua: 1 g/cm³; densidad del mercurio: 13,6 g/cm³.

Sol: 5 kg de agua; 68 kg de mercurio.

7.-/ Completa la siguiente tabla:

Masa (g)	Volumen (L)	Densidad (g/cm³)	Sustancia
3400	5		
	1,5		Leche
237		7,9	

Datos:

Densidad de la gasolina = 0,68 g/cm³; de la leche = 1,03 g/cm³; del hierro = 7,9 g/cm³.

Masa (g)	Volumen (L)	Densidad (g/cm³)	Sustancia
3400	5	0,68	Gasolina
1545	1,5	1,03	Leche
237	0.03	7.9	Hierro

5.-/ Un cubo tiene 0,2 cm de arista. ¿Cabe 10 mL de alcohol dentro de él? Sol: No, el volumen del cubo es más pequeño.

6.-/ Una garrafa de 5 litros se llena con agua. ¿Qué masa de agua hay en la garrafa? Si la misma garrafa se llena de mercurio, ¿qué masa de mercurio hay en la garrafa? <u>Datos</u>: densidad del agua: 1 g/cm³; densidad del mercurio: 13,6 g/cm³. Sol: 5 kg de agua; 68 kg de mercurio.

7.-/ Completa la siguiente tabla:

Masa (g)	Volumen (L)	Densidad (g/cm³)	Sustancia
3400	5		
	1,5		Leche
237		7,9	

Datos:

Densidad de la gasolina = 0,68 g/cm³; de la leche = 1,03 g/cm³; del hierro = 7,9 g/cm³.

Masa (g)	Volumen (L)	Densidad (g/cm³)	Sustancia
3400	5	0,68	Gasolina
1545	1,5	1,03	Leche
237	0,03	7,9	Hierro

- **8.-/** Un trozo de un tablón de madera de 10 cm³ de volumen tiene una masa de 5 g. Determina:
 - a) La densidad de la madera de la que está hecho el tablón.
 - b) La masa de 1 cm³ del tablón de madera.
 - c) La masa de otro trozo de 35 cm³ de madera del mismo tablón.

Sol: **a)** 0,5 g/cm³. **b)** 0,5 g. **c)** 17,5 g.

9.-/ ¿Qué volumen de aire cabe un aula de dimensiones 7 m x 8 m x 3,5 m? ¿Qué masa de aire tiene?

Datos: Densidad del aire 1,3 kg/m³.

Sol: 196 m³.; 255 kg de aire.

- **8.-/** Un trozo de un tablón de madera de 10 cm³ de volumen tiene una masa de 5 g. Determina:
 - a) La densidad de la madera de la que está hecho el tablón.
 - b) La masa de 1 cm³ del tablón de madera.
 - c) La masa de otro trozo de 35 cm³ de madera del mismo tablón.

Sol: **a)** 0,5 g/cm³. **b)** 0,5 g. **c)** 17,5 g.

9.-/ ¿Qué volumen de aire cabe un aula de dimensiones 7 m x 8 m x 3,5 m? ¿Qué masa de aire tiene?

Datos: Densidad del aire 1,3 kg/m³.

Sol: 196 m³.; 255 kg de aire.

8) a)
$$\frac{59}{10 \text{ cm}^3} = 0.59/\text{cm}^3$$

b) $0.59/\text{cm}^3 = 0.59$
c) $0.59/\text{cm}^3 = 0.59$
c) $0.59/\text{cm}^3 = 17.59$

- **8.-/** Un trozo de un tablón de madera de 10 cm³ de volumen tiene una masa de 5 g. Determina:
 - a) La densidad de la madera de la que está hecho el tablón.
 - b) La masa de 1 cm³ del tablón de madera.
 - c) La masa de otro trozo de 35 cm³ de madera del mismo tablón.

Sol: **a)** 0,5 g/cm³. **b)** 0,5 g. **c)** 17,5 g.

9.-/ ¿Qué volumen de aire cabe un aula de dimensiones 7 m x 8 m x 3,5 m? ¿Qué masa de aire tiene?

Datos: Densidad del aire 1,3 kg/m³.

Sol: 196 m³.; 255 kg de aire.

9)
$$Volumen = 7.8.3'5 = 196 \text{ m}^3$$

 $\frac{1'3 \text{ kg}}{1\text{ m}^3} = \frac{x}{196 \text{ m}^3} = x = 255 \text{ kg}$
 $\frac{1'3 \text{ kg}}{196 \text{ m}^3} = \frac{7}{196 \text{ m}^3} = x = 255 \text{ kg}$

- 11.-/ Para medir la densidad de una muestra de arena se realiza una experiencia con una probeta y agua, obteniéndose los siguientes resultados:
 - Masa de la probeta con agua: 193,8 g.
 - Volumen del agua de la probeta: 62 cm³.
 - Masa de la probeta con agua y arena: 275,4 g.
 - Volumen del agua con la arena: 92 cm³.

A partir de estos datos calcula la densidad de la arena.

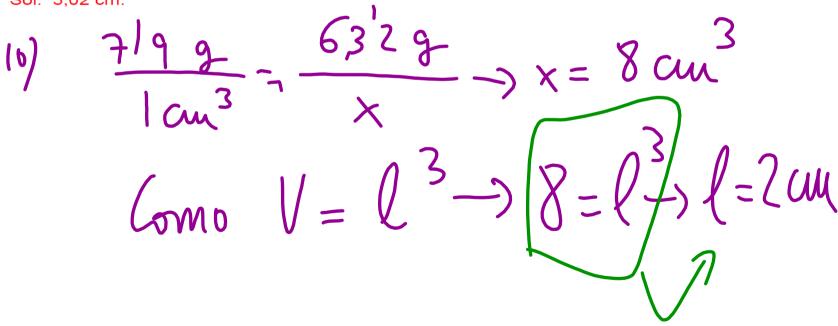
Sol: 2,72 g/cm³.

12.-/ Se echa 30 g de acetona en una probeta cilíndrica de 2 cm de radio. ¿Qué altura alcanzará la acetona en la probeta?

Datos: Densidad de la acetona: 0,79 g/cm³.

10.-/ Un dado perfecto de hierro tiene una masa de 63,2 g. Si la densidad del hierro es de 7,9 g/cm³, calcula la arista del cubo.

Sol: 2 cm.


- **11.-/** Para medir la densidad de una muestra de arena se realiza una experiencia con una probeta y agua, obteniéndose los siguientes resultados:
 - Masa de la probeta con agua: 193,8 g.
 - Volumen del agua de la probeta: 62 cm³.
 - Masa de la probeta con agua y arena: 275,4 g.
 - Volumen del agua con la arena: 92 cm³.

A partir de estos datos calcula la densidad de la arena.

Sol: 2,72 g/cm³.

12.-/ Se echa 30 g de acetona en una probeta cilíndrica de 2 cm de radio. ¿Qué altura alcanzará la acetona en la probeta?

Datos: Densidad de la acetona: 0,79 g/cm³.

10.-/ Un dado perfecto de hierro tiene una masa de 63,2 g. Si la densidad del hierro es de 7.9 g/cm³, calcula la arista del cubo.

Sol: 2 cm.

11.-/ Para medir la densidad de una muestra de arena se realiza una experiencia con una probeta y agua, obteniéndose los siguientes resultados:

- Masa de la probeta con agua: 193,8 g.
- Volumen del agua de la probeta: 62 cm³.
- Masa de la probeta con agua y arena: 275,4 g.
- Volumen del agua con la arena: 92 cm³.

A partir de estos datos calcula la densidad de la arena.

Sol: 2,72 g/cm³.

12.-/ Se echa 30 g de acetona en una probeta cilíndrica de 2 cm de radio. ¿Qué altura Datos: Densidad de la acetona: 0,79 g/cm³. 2 ESO NO

masa =
$$275'4 - 193'8 = 8169$$

Volumen = $92 - 62 = 30 \text{ cm}^3$
 $\frac{81'69}{30 \text{ cm}^3} = 2'72 \frac{9}{400}$

10.-/ Un dado perfecto de hierro tiene una masa de 63,2 g. Si la densidad del hierro es de 7.9 g/cm³, calcula la arista del cubo.

Sol: 2 cm.

11.-/ Para medir la densidad de una muestra de arena se realiza una experiencia con una probeta y agua, obteniéndose los siguientes resultados:

- Masa de la probeta con agua: 193,8 g.
- Volumen del agua de la probeta: 62 cm³.
- Masa de la probeta con agua y arena: 275,4 g.
- Volumen del agua con la arena: 92 cm³.

A partir de estos datos calcula la densidad de la arena.

Sol: 2,72 g/cm³.

12.-/ Se echa 30 g de acetona en una probeta cilíndrica de 2 cm de radio. ¿Qué altura alcanzará la acetona en la probeta?

Datos: Densidad de la acetona: 0,79 g/cm³.

$$\frac{3}{12} = \frac{309}{100} = \frac{3797}{100} = \frac{3797}{314.4} = \frac{3797}{314.4}$$

- **13.-/** Una botella vacía tiene una masa de 800 g, llena de agua de 960 g y llena de queroseno, de 931 g. Calcula:
 - a) La capacidad de la botella.
 - b) La densidad del queroseno

Sol: 160 cm³; 0,82 g/cm³.

14.-/ La densidad del oro es 19300 kg/m³. Averigua la masa de un lingote de oro de 20 cm x 15 cm x 10 cm.

Sol: 57,9 kg.

15.-/ Al sumergir un collar de 155 g en una probeta con agua, el volumen aumenta 9 mL. Sabiendo que la densidad del oro es 19,3 g/cm³, ¿es de oro el collar?

- **13.-/** Una botella vacía tiene una masa de 800 g, llena de agua de 960 g y llena de queroseno, de 931 g. Calcula:
 - a) La capacidad de la botella.
 - b) La densidad del queroseno

Sol: 160 cm³; 0,82 g/cm³.

14.-/ La densidad del oro es 19300 kg/m^3 . Averigua la masa de un lingote de oro de $20 \text{ cm} \times 15 \text{ cm} \times 10 \text{ cm}$.

Sol: 57,9 kg.

15.-/ Al sumergir un collar de 155 g en una probeta con agua, el volumen aumenta 9 mL.

Sabiendo que la densidad del oro es 19,3 g/cm³, ¿es de oro el collar?

$$\frac{(931-800)9}{160 \text{ cm}^3} = 0.82 \frac{9}{\text{cm}^3}$$

- **13.-/** Una botella vacía tiene una masa de 800 g, llena de agua de 960 g y llena de queroseno, de 931 g. Calcula:
 - a) La capacidad de la botella.
 - b) La densidad del queroseno

Sol: 160 cm³; 0,82 g/cm³.

14.-/ La densidad del oro es 19300 kg/m^3 . Averigua la masa de un lingote de oro de 20 cm x 15 cm x 10 cm.

Sol: 57,9 kg.

15.-/ Al sumergir un collar de 155 g en una probeta con agua, el volumen aumenta 9 mL. Sabiendo que la densidad del oro es 19,3 g/cm³, ¿es de oro el collar?

$$V = 20.15.10 = 3000 \text{ cm}^{3}$$

$$= 0'003 \text{ m}^{3}$$

$$= \sqrt{1000} \text{ kg}$$

$$= \sqrt{1003 \text{ m}^{3}} \Rightarrow x = 57'9 \text{ kg}$$

- **13.-/** Una botella vacía tiene una masa de 800 g, llena de agua de 960 g y llena de queroseno, de 931 g. Calcula:
 - a) La capacidad de la botella.
 - b) La densidad del queroseno

Sol: 160 cm³; 0,82 g/cm³.

14.-/ La densidad del oro es 19300 kg/m 3 . Averigua la masa de un lingote de oro de 20 cm x 15 cm x 10 cm.

Sol: 57,9 kg.

15.-/ Al sumergir un collar de 155 g en una probeta con agua, el volumen aumenta 9 mL. Sabiendo que la densidad del oro es 19,3 g/cm³, ¿es de oro el collar?

$$\frac{1559}{9 \, \text{mL}} = 17^{1}2 \frac{9}{\text{mL}} = 17^{1}2 \frac{9}{\text{mL}}$$

$$\frac{9 \, \text{mL}}{17^{1}22} + 19^{1}3$$